Automorphisms of distance-regular graph with intersection array $\{24,18,9;1,1,16\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1547-1552

Voir la notice de l'article provenant de la source Math-Net.Ru

Koolen and Park classified Shilla graphs with $b=2$ and with $b=3$. Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance-regular graph $\Gamma$ with intersection array $\{24,18,9;1,1,16\}$. Let $G={\rm Aut}(\Gamma)$ is nonsolvable group, $\bar G=G/S(G)$ and $\bar T$ is the socle of $\bar G$. Then $G$ contains now elements of order 35 and $\bar T\cong J_2, A_{10}$ or $\Omega^+_8(2)$. In particular graph $\Gamma$ is not vertex symmetric.
Keywords: distance-regular graph
Mots-clés : automorphism.
@article{SEMR_2019_16_a73,
     author = {A. A. Makhnev},
     title = {Automorphisms of distance-regular graph with intersection array $\{24,18,9;1,1,16\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1547--1552},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a73/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - Automorphisms of distance-regular graph with intersection array $\{24,18,9;1,1,16\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1547
EP  - 1552
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a73/
LA  - ru
ID  - SEMR_2019_16_a73
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T Automorphisms of distance-regular graph with intersection array $\{24,18,9;1,1,16\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1547-1552
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a73/
%G ru
%F SEMR_2019_16_a73
A. A. Makhnev. Automorphisms of distance-regular graph with intersection array $\{24,18,9;1,1,16\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1547-1552. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a73/