Automorphisms of distance-regular graph with intersection array $\{24,18,9;1,1,16\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1547-1552.

Voir la notice de l'article provenant de la source Math-Net.Ru

Koolen and Park classified Shilla graphs with $b=2$ and with $b=3$. Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance-regular graph $\Gamma$ with intersection array $\{24,18,9;1,1,16\}$. Let $G={\rm Aut}(\Gamma)$ is nonsolvable group, $\bar G=G/S(G)$ and $\bar T$ is the socle of $\bar G$. Then $G$ contains now elements of order 35 and $\bar T\cong J_2, A_{10}$ or $\Omega^+_8(2)$. In particular graph $\Gamma$ is not vertex symmetric.
Keywords: distance-regular graph
Mots-clés : automorphism.
@article{SEMR_2019_16_a73,
     author = {A. A. Makhnev},
     title = {Automorphisms of distance-regular graph with intersection array $\{24,18,9;1,1,16\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1547--1552},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a73/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - Automorphisms of distance-regular graph with intersection array $\{24,18,9;1,1,16\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1547
EP  - 1552
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a73/
LA  - ru
ID  - SEMR_2019_16_a73
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T Automorphisms of distance-regular graph with intersection array $\{24,18,9;1,1,16\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1547-1552
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a73/
%G ru
%F SEMR_2019_16_a73
A. A. Makhnev. Automorphisms of distance-regular graph with intersection array $\{24,18,9;1,1,16\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1547-1552. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a73/

[1] J.H. Koolen, J. Park, “Shilla distance-regular graphs”, Europ. J. Comb., 31 (2010), 2064–2073 | MR | Zbl

[2] A.A. Makhnev, M.P. Golubyatnikov, “A Shilla graph with intersection array $\{12,10,2;1,2,8\}$ does not exist”, Mathem. Zametki, 106:5 (2019), 797–800

[3] A.E. Brouwer, S. Sumaloj, C. Worawannotai, “The nonexistence of distance-regular graphs with intersection arrays $\{27,20,10;1,2,18\}$ and $\{36,28,4;1,2,24\}$”, Australasian J. Comb., 66 (2016), 330–332 | MR | Zbl

[4] I.N. Belousov, A.A. Makhnev, “Distance-regular graphs with intersectuion arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist”, Sibirean electr. Math. Reports, 15 (2018), 1506–1512 | MR | Zbl

[5] I.N. Belousov, A.A. Makhnev, “Distance-regular graph with intersection array $\{105,72,24;1,12,70\}$ does not exist”, Sibirean electr. Math. Reports, 16 (2019), 206–216 | MR | Zbl

[6] N.D. Zyulyarkina, A.A. Makhnev, “On automorphisms of distance-regular graph with intersection array $\{15,12,6;1,2,10\}$”, Doklady mathematics, 84:1 (2011), 510–514 | MR | Zbl

[7] I. N. Belousov, “Shilla distance-regular graphs with $b_2=sc_2$”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 3, 2018, 16–26 | MR

[8] P.J. Cameron, Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[9] A.L. Gavrilyuk, A.A. Makhnev, “On automorphisms of distance-regular graphs with intersection array $\{56,45,1;1,9,56\}$”, Doklady Mathematics, 81:3 (2010), 439–442 | MR | Zbl

[10] A.V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sibirean electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl