Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a72, author = {I. N. Belousov and A. A. Makhnev and M. S. Nirova}, title = {On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1385--1392}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a72/} }
TY - JOUR AU - I. N. Belousov AU - A. A. Makhnev AU - M. S. Nirova TI - On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1385 EP - 1392 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a72/ LA - ru ID - SEMR_2019_16_a72 ER -
%0 Journal Article %A I. N. Belousov %A A. A. Makhnev %A M. S. Nirova %T On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 1385-1392 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a72/ %G ru %F SEMR_2019_16_a72
I. N. Belousov; A. A. Makhnev; M. S. Nirova. On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1385-1392. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a72/
[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl
[2] M.S. Nirova, “On distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$”, Sib. electron. math. reports, 15 (2018), 175–185 | MR
[3] K. Coolsaet, A. Jurishich, “Using equality in the Krein conditions to prove nonexistence of sertain distance-regular graphs”, J. Comb. Theory, Series A, 115:6 (2008), 1086–1095 | MR | Zbl
[4] A. Jurishich, J. Vidali, “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65:1–2 (2012), 29–47 | MR | Zbl
[5] J.H. Koolen, J. Park, “Shilla distance-regular graphs”, Europ. J. Comb., 31:8 (2010), 2064–2073 | MR | Zbl
[6] A.A. Makhnev, M.M. Isakova, M.S. Nirova, “Distance-regular graphs with intersection arrays $\{69,56,10;1,14,60\}$, $\{74,54,15;1,9,60\}$ and $\{119,100,15;1,20,105\}$ do not exist”, Sib. electron. math. reports, 16 (2019), 1254–1259 | MR | Zbl
[7] P. Terwilliger, “A new unequality for distance-regular graphs”, Discrete Math., 137:1–3 (1995), 319–332 | MR | Zbl