Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a72, author = {I. N. Belousov and A. A. Makhnev and M. S. Nirova}, title = {On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1385--1392}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a72/} }
TY - JOUR AU - I. N. Belousov AU - A. A. Makhnev AU - M. S. Nirova TI - On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1385 EP - 1392 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a72/ LA - ru ID - SEMR_2019_16_a72 ER -
%0 Journal Article %A I. N. Belousov %A A. A. Makhnev %A M. S. Nirova %T On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 1385-1392 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a72/ %G ru %F SEMR_2019_16_a72
I. N. Belousov; A. A. Makhnev; M. S. Nirova. On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1385-1392. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a72/