On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1385-1392

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be a distance-regular graph of diameter 3 with strongly regular graphs $\Gamma_2$ and $\Gamma_3$. Then $\Gamma$ has intersection array $\{t(c_2+1)+a_3,tc_2,a_3+1;1,c_2,t(c_2+1)\}$ (Nirova M.S.) If $\Gamma$ is $Q$-polynomial then either $a_3=0,t=1$ and $\Gamma$ is Taylor graph or $(c_2+1)=a_3(a_3+1)/(t^2-a_3-1)$. We found 4 infinite series feasible intersection arrays in this situation.
Keywords: distance-regular graph
Mots-clés : $Q$-polynomial graph.
@article{SEMR_2019_16_a72,
     author = {I. N. Belousov and A. A. Makhnev and M. S. Nirova},
     title = {On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1385--1392},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a72/}
}
TY  - JOUR
AU  - I. N. Belousov
AU  - A. A. Makhnev
AU  - M. S. Nirova
TI  - On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1385
EP  - 1392
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a72/
LA  - ru
ID  - SEMR_2019_16_a72
ER  - 
%0 Journal Article
%A I. N. Belousov
%A A. A. Makhnev
%A M. S. Nirova
%T On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1385-1392
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a72/
%G ru
%F SEMR_2019_16_a72
I. N. Belousov; A. A. Makhnev; M. S. Nirova. On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1385-1392. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a72/