Mots-clés : automorphism.
@article{SEMR_2019_16_a67,
author = {A. A. Makhnev and M. M. Khamgokova},
title = {On automorphisms of a distance-regular graph with intersection array $\{39,36,22;1,2,18\}$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {638--647},
year = {2019},
volume = {16},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a67/}
}
TY - JOUR
AU - A. A. Makhnev
AU - M. M. Khamgokova
TI - On automorphisms of a distance-regular graph with intersection array $\{39,36,22;1,2,18\}$
JO - Sibirskie èlektronnye matematičeskie izvestiâ
PY - 2019
SP - 638
EP - 647
VL - 16
UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a67/
LA - ru
ID - SEMR_2019_16_a67
ER -
%0 Journal Article
%A A. A. Makhnev
%A M. M. Khamgokova
%T On automorphisms of a distance-regular graph with intersection array $\{39,36,22;1,2,18\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 638-647
%V 16
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a67/
%G ru
%F SEMR_2019_16_a67
A. A. Makhnev; M. M. Khamgokova. On automorphisms of a distance-regular graph with intersection array $\{39,36,22;1,2,18\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 638-647. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a67/
[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl
[2] A. Jurišić, J. Vidali, “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65 (2012), 29–47 | DOI | MR | Zbl
[3] A.A. Makhnev, M.S. Nirova, “On distance-regular graphs with $\lambda=2$”, Jornal of Siberian Federal Univ., 7:2 (2014), 188–194 | MR
[4] M. Behbahani, C. Lam, “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311:2–3 (2011), 132–144 | DOI | MR | Zbl
[5] P.J. Cameron, Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[6] A.L. Gavrilyuk, A.A. Makhnev, “On automorphisms of distance-regular graphs with intersection array $\{56, 45, 1; 1, 9, 56\}$”, Doklady Mathematics, 81:3 (2010), 439–442 | DOI | MR | Zbl
[7] A.V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sibirean Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl