Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a64, author = {A. A. Makhnev and V. I. Belousova}, title = {Automorphisms of distance regular graph with intersection array $\{30,27,24;1,2,10\}$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {493--500}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a64/} }
TY - JOUR AU - A. A. Makhnev AU - V. I. Belousova TI - Automorphisms of distance regular graph with intersection array $\{30,27,24;1,2,10\}$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 493 EP - 500 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a64/ LA - ru ID - SEMR_2019_16_a64 ER -
%0 Journal Article %A A. A. Makhnev %A V. I. Belousova %T Automorphisms of distance regular graph with intersection array $\{30,27,24;1,2,10\}$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 493-500 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a64/ %G ru %F SEMR_2019_16_a64
A. A. Makhnev; V. I. Belousova. Automorphisms of distance regular graph with intersection array $\{30,27,24;1,2,10\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 493-500. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a64/
[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl
[2] A.A. Makhnev, M.S. Nirova, “On distance-regular graphs with $\lambda=2$”, Jornal of Siberian Federal Univ., 7:2 (2014), 188–194 | MR
[3] A.A. Makhnev, D.V. Paduchikh, “Automorphisms of a distance-regular graph with intersection array $\{18,15,9;1,1,10\}$”, Commun. Math. Stat., 3:4 (2015), 527–534 | DOI | MR | Zbl
[4] K.S. Efimov, A.A. Makhnev, “Automorphisms of a distance-regular graph with itersectijn array $\{39,36,4;1,1,36\}$”, Ural Mathematical Journal, 4:2 (2018), 69–78 | DOI | MR
[5] A.A. Makhnev, N.D. Zyulyarkina, “On automorphisms of distance-regular graph with intersection array $\{15,12,6;1,2,10\}$”, Doklady Akademii nauk, 439:4 (2011), 443–447 | MR | Zbl
[6] A.A. Makhnev, “On automorphisms of a distance-regular graph with intersection array $\{33,30,15;1,2,15\}$”, Doklady Mathematics, 90:3 (2014), 743–747 | DOI | MR | Zbl
[7] A.A. Makhnev, D.V. Paduchikh, “On automorphisms of a distance-regular graph with intersection array $\{24,21,3;1,3,18\}$”, Algebra i Logika, 51:4 (2012), 476–495 | DOI | MR | Zbl
[8] A.A. Makhnev, M.S. Nirova, “On automorphisms of a distance-regular graph with intersection array $\{51,48,8;1,4,36\}$”, Doklady Mathematics, 87:3 (2013), 269–273 | DOI | MR | Zbl
[9] S. Bang, J.H. Koolen, “On geometric distance-regular graphs with diameter three”, Europ J. Comb., 36 (2014), 331–341 | DOI | MR | Zbl
[10] P.J. Cameron, Permutation Groups, London Math Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[11] A.L. Gavrilyuk, A.A. Makhnev, “On automorphisms of a distance-regular graph with intersection array $\{56,45,1;1,9,56\}$”, Doklady Akademii nauk, 432:5 (2010), 512–515 | MR
[12] A. Brouwer, W. Haemers, “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl
[13] A.V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Siberian Electronic Mathematical Reports, 6 (2009), 1–12 | MR | Zbl