Automorphisms of distance regular graph with intersection array $\{30,27,24;1,2,10\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 493-500

Voir la notice de l'article provenant de la source Math-Net.Ru

Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance-regular graph with intersection array $\{30,27,24;1,2,10\}$. Let $G={\rm Aut}(\Gamma)$ is nonsolvable group, $\bar G=G/S(G)$ and $\bar T$ is the socle of $\bar G$. If $\Gamma$ is vertex-symmetric then $(G)$ is $\{2\}$-group, and $\bar T\cong L_2(11)$, $M_{11}$, $U_5(2)$, $M_{22}$, $A_{11}$, $HiS$.
Keywords: strongly regular graph, distance-regular graph
Mots-clés : automorphism.
@article{SEMR_2019_16_a64,
     author = {A. A. Makhnev and V. I. Belousova},
     title = {Automorphisms of distance regular graph with intersection array $\{30,27,24;1,2,10\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {493--500},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a64/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - V. I. Belousova
TI  - Automorphisms of distance regular graph with intersection array $\{30,27,24;1,2,10\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 493
EP  - 500
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a64/
LA  - ru
ID  - SEMR_2019_16_a64
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A V. I. Belousova
%T Automorphisms of distance regular graph with intersection array $\{30,27,24;1,2,10\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 493-500
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a64/
%G ru
%F SEMR_2019_16_a64
A. A. Makhnev; V. I. Belousova. Automorphisms of distance regular graph with intersection array $\{30,27,24;1,2,10\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 493-500. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a64/