Automorphisms of distance regular graph with intersection array $\{30,27,24;1,2,10\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 493-500.

Voir la notice de l'article provenant de la source Math-Net.Ru

Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance-regular graph with intersection array $\{30,27,24;1,2,10\}$. Let $G={\rm Aut}(\Gamma)$ is nonsolvable group, $\bar G=G/S(G)$ and $\bar T$ is the socle of $\bar G$. If $\Gamma$ is vertex-symmetric then $(G)$ is $\{2\}$-group, and $\bar T\cong L_2(11)$, $M_{11}$, $U_5(2)$, $M_{22}$, $A_{11}$, $HiS$.
Keywords: strongly regular graph, distance-regular graph
Mots-clés : automorphism.
@article{SEMR_2019_16_a64,
     author = {A. A. Makhnev and V. I. Belousova},
     title = {Automorphisms of distance regular graph with intersection array $\{30,27,24;1,2,10\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {493--500},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a64/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - V. I. Belousova
TI  - Automorphisms of distance regular graph with intersection array $\{30,27,24;1,2,10\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 493
EP  - 500
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a64/
LA  - ru
ID  - SEMR_2019_16_a64
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A V. I. Belousova
%T Automorphisms of distance regular graph with intersection array $\{30,27,24;1,2,10\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 493-500
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a64/
%G ru
%F SEMR_2019_16_a64
A. A. Makhnev; V. I. Belousova. Automorphisms of distance regular graph with intersection array $\{30,27,24;1,2,10\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 493-500. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a64/

[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl

[2] A.A. Makhnev, M.S. Nirova, “On distance-regular graphs with $\lambda=2$”, Jornal of Siberian Federal Univ., 7:2 (2014), 188–194 | MR

[3] A.A. Makhnev, D.V. Paduchikh, “Automorphisms of a distance-regular graph with intersection array $\{18,15,9;1,1,10\}$”, Commun. Math. Stat., 3:4 (2015), 527–534 | DOI | MR | Zbl

[4] K.S. Efimov, A.A. Makhnev, “Automorphisms of a distance-regular graph with itersectijn array $\{39,36,4;1,1,36\}$”, Ural Mathematical Journal, 4:2 (2018), 69–78 | DOI | MR

[5] A.A. Makhnev, N.D. Zyulyarkina, “On automorphisms of distance-regular graph with intersection array $\{15,12,6;1,2,10\}$”, Doklady Akademii nauk, 439:4 (2011), 443–447 | MR | Zbl

[6] A.A. Makhnev, “On automorphisms of a distance-regular graph with intersection array $\{33,30,15;1,2,15\}$”, Doklady Mathematics, 90:3 (2014), 743–747 | DOI | MR | Zbl

[7] A.A. Makhnev, D.V. Paduchikh, “On automorphisms of a distance-regular graph with intersection array $\{24,21,3;1,3,18\}$”, Algebra i Logika, 51:4 (2012), 476–495 | DOI | MR | Zbl

[8] A.A. Makhnev, M.S. Nirova, “On automorphisms of a distance-regular graph with intersection array $\{51,48,8;1,4,36\}$”, Doklady Mathematics, 87:3 (2013), 269–273 | DOI | MR | Zbl

[9] S. Bang, J.H. Koolen, “On geometric distance-regular graphs with diameter three”, Europ J. Comb., 36 (2014), 331–341 | DOI | MR | Zbl

[10] P.J. Cameron, Permutation Groups, London Math Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[11] A.L. Gavrilyuk, A.A. Makhnev, “On automorphisms of a distance-regular graph with intersection array $\{56,45,1;1,9,56\}$”, Doklady Akademii nauk, 432:5 (2010), 512–515 | MR

[12] A. Brouwer, W. Haemers, “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl

[13] A.V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Siberian Electronic Mathematical Reports, 6 (2009), 1–12 | MR | Zbl