On the number of ones in the cycle of multicycliс sequence determined by Boolean function
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 229-235

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents formulas that denote the relationship between the number of ones in the cycle of a multicyclic sequence modulo 2, defined by the Boolean function, and the number of ones in the registers of the generator through the spectral characteristics of this function. Using these formulas, we prove normal-type limit theorems for the number of ones in the cycle of the multicyclic sequence if the registers are filled with independent binary random variables with the same distributions within each register, the lengths of the registers tend to infinity and their number remains fixed. We prove that the limit distribution can be both the usual normal distribution and the distribution of the product of independent standard normal random variables.
Keywords: number of ones, multicyclic sequence, Boolean function, central limit theorem.
@article{SEMR_2019_16_a63,
     author = {N. M. Mezhennaya and V. G. Mikhailov},
     title = {On the number of ones in the cycle of multicycli{\cyrs} sequence determined by {Boolean} function},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {229--235},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a63/}
}
TY  - JOUR
AU  - N. M. Mezhennaya
AU  - V. G. Mikhailov
TI  - On the number of ones in the cycle of multicycliс sequence determined by Boolean function
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 229
EP  - 235
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a63/
LA  - ru
ID  - SEMR_2019_16_a63
ER  - 
%0 Journal Article
%A N. M. Mezhennaya
%A V. G. Mikhailov
%T On the number of ones in the cycle of multicycliс sequence determined by Boolean function
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 229-235
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a63/
%G ru
%F SEMR_2019_16_a63
N. M. Mezhennaya; V. G. Mikhailov. On the number of ones in the cycle of multicycliс sequence determined by Boolean function. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 229-235. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a63/