On the number of ones in the cycle of multicycliс sequence determined by Boolean function
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 229-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents formulas that denote the relationship between the number of ones in the cycle of a multicyclic sequence modulo 2, defined by the Boolean function, and the number of ones in the registers of the generator through the spectral characteristics of this function. Using these formulas, we prove normal-type limit theorems for the number of ones in the cycle of the multicyclic sequence if the registers are filled with independent binary random variables with the same distributions within each register, the lengths of the registers tend to infinity and their number remains fixed. We prove that the limit distribution can be both the usual normal distribution and the distribution of the product of independent standard normal random variables.
Keywords: number of ones, multicyclic sequence, Boolean function, central limit theorem.
@article{SEMR_2019_16_a63,
     author = {N. M. Mezhennaya and V. G. Mikhailov},
     title = {On the number of ones in the cycle of multicycli{\cyrs} sequence determined by {Boolean} function},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {229--235},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a63/}
}
TY  - JOUR
AU  - N. M. Mezhennaya
AU  - V. G. Mikhailov
TI  - On the number of ones in the cycle of multicycliс sequence determined by Boolean function
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 229
EP  - 235
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a63/
LA  - ru
ID  - SEMR_2019_16_a63
ER  - 
%0 Journal Article
%A N. M. Mezhennaya
%A V. G. Mikhailov
%T On the number of ones in the cycle of multicycliс sequence determined by Boolean function
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 229-235
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a63/
%G ru
%F SEMR_2019_16_a63
N. M. Mezhennaya; V. G. Mikhailov. On the number of ones in the cycle of multicycliс sequence determined by Boolean function. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 229-235. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a63/

[1] P. Pohl, “Description of MCV, a pseudo-random number generator”, Scand. Actuar. J., 1 (1976), 1–14 | DOI | MR | Zbl

[2] G.P. Agibalov, “Finite automata in cryptography”, Prikl. Diskr. Mat. Suppl., 2 (2009), 43–73 (in Russian)

[3] N.M. Mezhennaya, V.G. Mikhailov, “On the distribution of the number of ones in the output sequence of the MCV-generator over $GF(2)$”, Mat. Vopr. Kriptogr., 4:4 (2013), 95–107 (in Russian) | DOI | MR

[4] N.M. Mezhennaya,, “On distribution of number of ones in binary multicycle sequence”, Prikl. Diskr. Mat., 2015, no. 1(27), 69–77 (in Russian)

[5] N.M. Mezhennaya, V.G. Mikhailov, “On the number of ones in the output sequence of a multicyclic generator determined by Boolean function”, Proc. of the X International Conference “Discrete Models in Control Systems Theory” (Moscow and Moscow region), 2018, 195–198 (in Russian)

[6] O.A. Logachev, A.A. Sal'nikov, S.V. Smyshlyaev, V.V. Yashchenko, Boolean functions in coding theory and cryptology, MCCME, M., 2012 (in Russian) | MR

[7] B.A. Pogorelov, V.N. Sachkov (eds.), Glossary of cryptographic terms, MCCME, M., 2006 (in Russian)

[8] I.B. Bilyak, O.V. Kamlovskii,, “Frequency characteristics of cycles in output sequences generated by combining generators over the field of two elements”, Prikl. Diskr. Mat., 2015, no. 3(29), 17–31 (in Russian)

[9] O.V. Kamlovskii, “Occurrence numbers for vectors in cycles of output sequences of binary combining generators”, Probl. Inf. Trans., 53:1 (2017), 84–91 | DOI | MR | Zbl

[10] N.M. Mezhennaya, V.G. Mikhailov, “On the number of ones in outcome sequence of extended Pohl generator”, Discrete Math. Appl., 31 (2019) (in Russian)