Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a61, author = {I. A. Dynnikov}, title = {Transverse-Legendrian links}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1960--1980}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a61/} }
I. A. Dynnikov. Transverse-Legendrian links. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1960-1980. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a61/
[1] J. Birman, W. Menasco, “Studying links via closed braids. IV. Composite links and split links”, Invent. Math., 102:1 (1990), 115–139 | DOI | MR | Zbl
[2] W. Chongchitmate, L. Ng, “An atlas of Legendrian knots”, Exp. Math., 22:1 (2013), 26–37, arXiv: 1010.3997 [math.SG] | DOI | MR | Zbl
[3] P. Cromwell, “Embedding knots and links in an open book. I. Basic properties”, Topology Appl., 64:1 (1995), 37–58 | DOI | MR | Zbl
[4] I. Dynnikov, “Arc-presentations of links: Monotonic simplification”, Fundam. Math., 190 (2006), 29–76, arXiv: math/0208153 [math.GT] | DOI | MR | Zbl
[5] Trans. Moscow Math. Soc., 74:2 (2013), 97–144, arXiv: 1206.0898 [math.GT] | MR | Zbl
[6] I. Dynnikov, M. Prasolov, Rectangular diagrams of surfaces: distinguishing Legendrian knots, arXiv: 1712.06366 [math.GT] | MR
[7] I. Dynnikov, V. Shastin, Distinguishing Legendrian knots with trivial orientation-preserving symmetry group, arXiv: 1810.06460 [math.GT]
[8] J. Etnyre, “Legendrian and transversal knots”, Handbook of knot theory, Elsevier, Amsterdam, 2005, 105–185 | DOI | MR | Zbl
[9] H. Geiges, An Introduction to Contact Topology, Cambridge University Press, Cambridge, 2008 | MR | Zbl
[10] P. Ozsváth, Z. Szabó, D. Thurston, “Legendrian knots, transverse knots and combinatorial Floer homology”, Geometry and Topology, 12:2 (2008), 941–980, arXiv: math/0611841 [math.GT] | DOI | MR | Zbl