On zero divisor graphs of finite commutative local rings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 465-480

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the zero divisor graph of a commutative finite local rings $R$ of characteristic $2$ with Jacobson radical $J$ such that ${\dim_F J/J^2=2}$, ${\dim_F J^2/J^3=2}$, ${\dim_F J^3=1}$, $J^4=(0)$ and $F=R/J\cong GF(2^r)$, the finite field of $2^r$ elements.
Keywords: finite ring, local ring, zero divisor graph.
@article{SEMR_2019_16_a6,
     author = {E. V. Zhuravlev and A. S. Monastyreva},
     title = {On zero divisor graphs of finite commutative local rings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {465--480},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a6/}
}
TY  - JOUR
AU  - E. V. Zhuravlev
AU  - A. S. Monastyreva
TI  - On zero divisor graphs of finite commutative local rings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 465
EP  - 480
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a6/
LA  - ru
ID  - SEMR_2019_16_a6
ER  - 
%0 Journal Article
%A E. V. Zhuravlev
%A A. S. Monastyreva
%T On zero divisor graphs of finite commutative local rings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 465-480
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a6/
%G ru
%F SEMR_2019_16_a6
E. V. Zhuravlev; A. S. Monastyreva. On zero divisor graphs of finite commutative local rings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 465-480. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a6/