Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a6, author = {E. V. Zhuravlev and A. S. Monastyreva}, title = {On zero divisor graphs of finite commutative local rings}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {465--480}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a6/} }
TY - JOUR AU - E. V. Zhuravlev AU - A. S. Monastyreva TI - On zero divisor graphs of finite commutative local rings JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 465 EP - 480 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a6/ LA - ru ID - SEMR_2019_16_a6 ER -
E. V. Zhuravlev; A. S. Monastyreva. On zero divisor graphs of finite commutative local rings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 465-480. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a6/
[1] I. Beck, “Coloring of commutative rings”, J. Algebra, 116 (1988), 208–226 | DOI | MR | Zbl
[2] D.F. Anderson, P.S. Livingston, “The zero-divizor graph of a commutative ring”, J. Algebra, 217 (1999), 434–447 | DOI | MR | Zbl
[3] S. Akbari, H.R. Maimani, S. Yassemi, “When zero-divisor graph is planar or a complete $r$-partite graph”, J. Algebra, 270 (2003), 169–180 | DOI | MR | Zbl
[4] R. Belshoff, J. Chapman, “Planar zero-divisor graphs”, J. Algebra, 316 (2007), 471–480 | DOI | MR | Zbl
[5] A.S. Kuz'mina, Yu.N. Maltsev, “Nilpotent Finite Rings with Planar Zero-Divisor Graphs”, Asian-European J. Math., 1:4 (2008), 565–574 | DOI | MR | Zbl
[6] A.S. Kuzmina, “On finite non-nilpotent rings with planar zero-divisor graphs”, Discretnaya Matematika, 4 (2009), 60–75 | DOI | MR | Zbl
[7] A.S. Kuzmina, “Finite rings with Eulerian zero-divisor graphs”, J. of Algebra and Its Appl., 11:3 (2012), 551–559 | MR | Zbl
[8] S. Akbari, A. Mohammadian, “Zero-divisor graphs of non-commutative rings”, J. Algebra, 296:2 (2006), 462–479 | DOI | MR | Zbl
[9] A.S. Kuzmina, “On some properties of ring varieties, where isomorphic zero-divisor graphs of finite rings give isomorphic rings”, Siberian Electronic Mathematical Reports, 8 (2011), 179–190 | Zbl
[10] E.V. Zhuravlev, A.S. Kuz'mina, Yu.N. Mal'tsev, “The description of varieties of rings whose finite rings are uniquely determined by their zero-divisor graphs”, Russian Mathematics, 57 (2013), 10–20 | DOI | MR | Zbl
[11] N. Bloomfield, C. Wickham, “Local rings with genus two zero divisor graph”, Communication in Algebra, 38 (2010), 2965–2980 | DOI | MR | Zbl
[12] N. Bloomfield, “The zero divisor graphs of commutative local rings of order $p^4$ and $p^5$”, Communication in Algebra, 41:2 (2013), 765–775 | DOI | MR | Zbl
[13] B.R. McDonald, Finite rings with identity, Decker, Inc., New York, 1974 | MR
[14] R. Raghavendran, “Finite associative rings”, Compositio Math., 21 (1969), 195–229 | MR | Zbl
[15] C.J. Chikunji, “Unit groups of cube radical zero commutative completely primary finite rings”, Int. J. Math. Sci., 4 (2005), 572–579 | MR
[16] A. Tadayyonfar, A.R. Ashrafi, “The zero divisor graphs of finite rings of cubefree order”, FILOMAT, 29:8 (2010), 1715–1720 | DOI | MR
[17] B. Sorbas, G.D. Williams, “Rings of order $p^5$. Part 1. Nonlocal rings”, J. Algebra, 231:2 (2000), 677–690 | DOI | MR
[18] B. Sorbas, G.D. Williams, “Rings of order $p^5$. Part 2. Local rings”, J. Algebra, 231:2 (2000), 691–704 | DOI | MR
[19] V.G. Antipkin, V.P. Elizarov, “Rings of order $p^3$”, Siberian Mathematical Journal, 23 (1982), 457–464 | DOI | MR
[20] B. Fine, “Classification of finite rings of order $p^2$”, Mathematics Magazine, 66 (1993), 248–252 | DOI | MR | Zbl
[21] E.V. Zhuravlev, “On the classification of finite commutative local rings”, Siberian Electronic Mathematical Reports, 12 (2015), 625–638 | MR | Zbl