Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a55, author = {V. A. Kyrov}, title = {Analytic embedding of some two-dimensional geometries of maximal mobility}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {916--937}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a55/} }
V. A. Kyrov. Analytic embedding of some two-dimensional geometries of maximal mobility. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 916-937. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a55/
[1] G.G. Mikhailichenko, The mathematical basics and results of the theory of physical structures, 2012, arXiv: 1602.02795 [math-ph]
[2] G.G. Mikhailichenko, “Two-dimensional geometry”, Soviet Math. Doklady, 24:2 (1981), 346–348 | MR | Zbl
[3] H. Helmholz, “Uber die Thatsachen, die der Geometrie zu Grunde liegen”, Nachr. Konigl.Ges. Wiss. und Georg-Augusts-Univ. Gottingen, 1868, 19
[4] V.A. Kyrov, “Functional equations in pseudo-Euclidean geometry”, Sib. Zn. Ind. Mat, 13:4 (2010), 38–51 (in Russian) | MR | Zbl
[5] V.A. Kyrov, G.G. Mikhailichenko, “An analytic method for the embedding of the Euclidean and pseudo-Euclidean geometries”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 23, no. 2, 2017, 167–181 (in Russian) | MR
[6] V.A. Kyrov, “Ob odnom klasse funktsionalno-differentsialnykh uravnenii”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 26:1 (2012), 31–38 (in Russian) | DOI | MR
[7] V.A. Kyrov, G.G. Mikhailichenko, “The analytic method of embedding symplectic geometry”, Siberian Electronic Mathematical Reports, 14 (2017), 657–-672 (in Russian) | MR | Zbl
[8] V.A. Kyrov, “The analytical method for embedding multidimensional pseudo-Euclidean geometries”, Siberian Electronic Mathematical Reports, 15 (2018), 741–-758 (in Russian) | MR | Zbl
[9] G.G. Mikhailichenko, “On group and phenomenological symmetry in geometry”, Siberian Mathematical Journal, 25:5 (1984), 99–113 | MR | Zbl
[10] L.V. Ovsyannikov, A group analysis of differential equation, Nauka, M., 1978 | MR
[11] V.A. Kyrov, The geometry of Helmgolz, LAP, Saarbrucken, 2011
[12] G.M. Fichtengolz, A course of differential and integral calculus, v. 2, Phismhatgis, M., 1963 | MR
[13] L.E. Elsgoltz, Differential equations and calculus of variations, Nauka, M., 1969 | MR
[14] V.A. Kyrov, R.A. Bogdanova, “The groups of motions of some three-dimensional maximal mobility geometries”, Siberian Mathematical Journal, 59:2 (2018), 323–331 (in Russian) | DOI | MR | Zbl
[15] V.A. Kyrov, “Six-dimensional lie algebras of groups of motions of Tree-dimensional phenomenologically symmetric geometries”, Polymetric geometries, Novosibirsk State University, Novosibirsk, 2001, 116–143
[16] V. Dyakonov, Maple 10/11/12/13/14 in mathematical calculations, DMS, M., 2014
[17] V.H. Lev, “Three-dimensional geometries in the theory of physical structures”, Vychisl. Sistemy, 125 (1988), 90–103 (in Russian) | MR | Zbl
[18] V.A. Kyrov, “Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,2)$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 26:3 (2016), 312–323 (in Russian) | DOI | MR | Zbl
[19] V.A. Kyrov, “Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,M)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,M)$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 27:1 (2017), 42–53 (in Russian) | DOI | MR | Zbl