Analytic embedding of some two-dimensional geometries of maximal mobility
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 916-937

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we solve the problem of embedding two-dimensional geometries: simplicial, dual-gelmgoltz, Helmholtz proper and pseudohelmholtz, into three-dimensional geometries. This problem is solved by an analytical method. The functions defining these geometries are found. Basic operators of Lie algebras of groups of motions are calculated.
Keywords: geometry of maximum mobility, functional equation, differential equation, Lie algebra.
Mots-clés : Lie transformation group
@article{SEMR_2019_16_a55,
     author = {V. A. Kyrov},
     title = {Analytic embedding of some two-dimensional geometries of maximal mobility},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {916--937},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a55/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - Analytic embedding of some two-dimensional geometries of maximal mobility
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 916
EP  - 937
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a55/
LA  - ru
ID  - SEMR_2019_16_a55
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T Analytic embedding of some two-dimensional geometries of maximal mobility
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 916-937
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a55/
%G ru
%F SEMR_2019_16_a55
V. A. Kyrov. Analytic embedding of some two-dimensional geometries of maximal mobility. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 916-937. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a55/