Some characterization of curves in $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 902-915.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1997 Emil Molnár introduced [15] the hyperboloid model of $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$ space. In this paper, we obtained characterizations of a curve with respect to the Frenet frame of $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$. Rectifying curves are introduced in [3] as space curves whose position vector always lies in its rectifying plane. We characterize rectifying curves in $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$.
Keywords: $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$ geometry, biharmonic curves, general helix, rectifying curve.
@article{SEMR_2019_16_a54,
     author = {B. Senoussi and M. Bekkar},
     title = {Some characterization of curves in $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {902--915},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a54/}
}
TY  - JOUR
AU  - B. Senoussi
AU  - M. Bekkar
TI  - Some characterization of curves in $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 902
EP  - 915
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a54/
LA  - en
ID  - SEMR_2019_16_a54
ER  - 
%0 Journal Article
%A B. Senoussi
%A M. Bekkar
%T Some characterization of curves in $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 902-915
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a54/
%G en
%F SEMR_2019_16_a54
B. Senoussi; M. Bekkar. Some characterization of curves in $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 902-915. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a54/

[1] R. Caddeo, C. Oniciuc, P. Piu, “Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group”, Rend. Sem,. Mat. Univ. Politec. Torino, 62:3 (2004), 265–277 | MR | Zbl

[2] B. Y. Chen, F. Dillen, “Rectifying curves as centrodes and extremal curves”, Bull. Inst. Math. Academia Sinica, 33:2 (2005), 77–90 | MR | Zbl

[3] B.-Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly, 110:2 (2003), 147–152 | DOI | MR | Zbl

[4] B.-Y. Chen, S. Ishikawa, “Biharmonic surfaces in pseudo-Euclidean spaces”, Mem. Fac. Sci. Kyushu Univ. Ser. A, 45:2 (1991), 323–347 | MR | Zbl

[5] G. Csima, J. Szirmai, “The sum of the interior angles in geodesic and translation triangles of $SL(2,\mathbb{R})$ geometry”, Filomat., 2018, 5023–5036 | DOI | MR

[6] S. Deshmukh, B.-Y. Chen, S. Alshamari, “On rectifying curves in Euclidean 3-space”, Turk. J. Math., 42 (2018), 609–620 | DOI | MR | Zbl

[7] B. Divjak, Z. Erjavec, B. Szabolcs, B. Szilágyi, “Geodesics and geodesic spheres in $\widetilde{SL(2,\mathbb{R})}$ geometry”, Math. Commun, 14:2 (2009), 413–424 | MR | Zbl

[8] J. Eells, J.H. Sampson, “Harmonic mappings of Riemannian manifolds”, Amer. J. Math., 86 (1964), 109–160 | DOI | MR | Zbl

[9] N. Ekmekçi, H.H. Hacisalihoğlu, “On helices of a Lorentzian manifold”, Commun. Fac. Sci., Univ. Ank. Series A1, 1996, 45–50 | MR | Zbl

[10] Z. Erjavec, D. Horvat, “Biharmonic curves in $\widetilde{SL(2,\mathbb{R})}$ space”, Math. Commun, 19:2 (2014), 291–299 | MR | Zbl

[11] Z. Erjavec, “Minimal surfacesin $\widetilde{SL(2,\mathbb{R})}$ geometry”, Glasnik Matematički, 50:1 (2015), 207–221 | DOI | MR | Zbl

[12] T. Ikawa, “On curves and submanifolds in an indefinite Riemannian manifold”, Tsukuba J. Math., 9 (1985), 353–371 | DOI | MR | Zbl

[13] K. Ilarslan, E. Nešović, T. M. Petrović, “Some characterization of rectifying curves in the Minkowski 3-space”, Novi Sad J. Math., 32 (2003), 23–32 | MR

[14] P. Lucas, J. A. Ortega-Yagues, “Rectifying curves in the three-dimensional sphere”, J. Math. Anal. Appl., 421:2 (2015), 1855–1868 | DOI | MR | Zbl

[15] E. Molnár, “The projective interpretation of the eight 3-dimensional homogeneous geometries”, Beitr. Algebra Geom., 38 (1997), 261–288 | MR | Zbl

[16] E. Molnár, J. Szilágyi, “Translation curves and their spheres in homogeneous geometries”, Publ. Math., 78:2 (2011), 327–346 | MR | Zbl

[17] E. Molnár, J. Szirmai, “Symmetries in the $8$ homogeneous $3-$ geometries”, Symmetry Culture and Science, 21 (2010), 87–117 | Zbl

[18] E. Molnár, J. Szirmai, A. Vesnin, “The optimal Packings by translation balls in $SL(2,\mathbb{R})$”, Journal of Geometry, 105:2 (2014), 287–306 | DOI | MR | Zbl

[19] Y. Nakanishi, “On helices and pseudo-Riemannian submanifolds”, Tsukuba J. Math., 12:2 (1988), 469–476 | DOI | MR | Zbl

[20] D. J. Struik, Lectures on classical differential geometry, Dover Publications, Inc., New York, 1988 | MR | Zbl