Some characterization of curves in $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 902-915

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1997 Emil Molnár introduced [15] the hyperboloid model of $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$ space. In this paper, we obtained characterizations of a curve with respect to the Frenet frame of $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$. Rectifying curves are introduced in [3] as space curves whose position vector always lies in its rectifying plane. We characterize rectifying curves in $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$.
Keywords: $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$ geometry, biharmonic curves, general helix, rectifying curve.
@article{SEMR_2019_16_a54,
     author = {B. Senoussi and M. Bekkar},
     title = {Some characterization of curves in $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {902--915},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a54/}
}
TY  - JOUR
AU  - B. Senoussi
AU  - M. Bekkar
TI  - Some characterization of curves in $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 902
EP  - 915
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a54/
LA  - en
ID  - SEMR_2019_16_a54
ER  - 
%0 Journal Article
%A B. Senoussi
%A M. Bekkar
%T Some characterization of curves in $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 902-915
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a54/
%G en
%F SEMR_2019_16_a54
B. Senoussi; M. Bekkar. Some characterization of curves in $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 902-915. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a54/