Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a54, author = {B. Senoussi and M. Bekkar}, title = {Some characterization of curves in $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {902--915}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a54/} }
TY - JOUR AU - B. Senoussi AU - M. Bekkar TI - Some characterization of curves in $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 902 EP - 915 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a54/ LA - en ID - SEMR_2019_16_a54 ER -
B. Senoussi; M. Bekkar. Some characterization of curves in $\widetilde{\mathbf{SL}_{2}\mathbf{ \mathbb{R} }}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 902-915. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a54/
[1] R. Caddeo, C. Oniciuc, P. Piu, “Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group”, Rend. Sem,. Mat. Univ. Politec. Torino, 62:3 (2004), 265–277 | MR | Zbl
[2] B. Y. Chen, F. Dillen, “Rectifying curves as centrodes and extremal curves”, Bull. Inst. Math. Academia Sinica, 33:2 (2005), 77–90 | MR | Zbl
[3] B.-Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly, 110:2 (2003), 147–152 | DOI | MR | Zbl
[4] B.-Y. Chen, S. Ishikawa, “Biharmonic surfaces in pseudo-Euclidean spaces”, Mem. Fac. Sci. Kyushu Univ. Ser. A, 45:2 (1991), 323–347 | MR | Zbl
[5] G. Csima, J. Szirmai, “The sum of the interior angles in geodesic and translation triangles of $SL(2,\mathbb{R})$ geometry”, Filomat., 2018, 5023–5036 | DOI | MR
[6] S. Deshmukh, B.-Y. Chen, S. Alshamari, “On rectifying curves in Euclidean 3-space”, Turk. J. Math., 42 (2018), 609–620 | DOI | MR | Zbl
[7] B. Divjak, Z. Erjavec, B. Szabolcs, B. Szilágyi, “Geodesics and geodesic spheres in $\widetilde{SL(2,\mathbb{R})}$ geometry”, Math. Commun, 14:2 (2009), 413–424 | MR | Zbl
[8] J. Eells, J.H. Sampson, “Harmonic mappings of Riemannian manifolds”, Amer. J. Math., 86 (1964), 109–160 | DOI | MR | Zbl
[9] N. Ekmekçi, H.H. Hacisalihoğlu, “On helices of a Lorentzian manifold”, Commun. Fac. Sci., Univ. Ank. Series A1, 1996, 45–50 | MR | Zbl
[10] Z. Erjavec, D. Horvat, “Biharmonic curves in $\widetilde{SL(2,\mathbb{R})}$ space”, Math. Commun, 19:2 (2014), 291–299 | MR | Zbl
[11] Z. Erjavec, “Minimal surfacesin $\widetilde{SL(2,\mathbb{R})}$ geometry”, Glasnik Matematički, 50:1 (2015), 207–221 | DOI | MR | Zbl
[12] T. Ikawa, “On curves and submanifolds in an indefinite Riemannian manifold”, Tsukuba J. Math., 9 (1985), 353–371 | DOI | MR | Zbl
[13] K. Ilarslan, E. Nešović, T. M. Petrović, “Some characterization of rectifying curves in the Minkowski 3-space”, Novi Sad J. Math., 32 (2003), 23–32 | MR
[14] P. Lucas, J. A. Ortega-Yagues, “Rectifying curves in the three-dimensional sphere”, J. Math. Anal. Appl., 421:2 (2015), 1855–1868 | DOI | MR | Zbl
[15] E. Molnár, “The projective interpretation of the eight 3-dimensional homogeneous geometries”, Beitr. Algebra Geom., 38 (1997), 261–288 | MR | Zbl
[16] E. Molnár, J. Szilágyi, “Translation curves and their spheres in homogeneous geometries”, Publ. Math., 78:2 (2011), 327–346 | MR | Zbl
[17] E. Molnár, J. Szirmai, “Symmetries in the $8$ homogeneous $3-$ geometries”, Symmetry Culture and Science, 21 (2010), 87–117 | Zbl
[18] E. Molnár, J. Szirmai, A. Vesnin, “The optimal Packings by translation balls in $SL(2,\mathbb{R})$”, Journal of Geometry, 105:2 (2014), 287–306 | DOI | MR | Zbl
[19] Y. Nakanishi, “On helices and pseudo-Riemannian submanifolds”, Tsukuba J. Math., 12:2 (1988), 469–476 | DOI | MR | Zbl
[20] D. J. Struik, Lectures on classical differential geometry, Dover Publications, Inc., New York, 1988 | MR | Zbl