Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a52, author = {D. I. Sabitov and I. Kh. Sabitov}, title = {Volume polynomials for polyhedra combinatorially isometric to $n$-prisms in the cases $n=5,6,7$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {439--448}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a52/} }
TY - JOUR AU - D. I. Sabitov AU - I. Kh. Sabitov TI - Volume polynomials for polyhedra combinatorially isometric to $n$-prisms in the cases $n=5,6,7$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 439 EP - 448 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a52/ LA - ru ID - SEMR_2019_16_a52 ER -
%0 Journal Article %A D. I. Sabitov %A I. Kh. Sabitov %T Volume polynomials for polyhedra combinatorially isometric to $n$-prisms in the cases $n=5,6,7$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 439-448 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a52/ %G ru %F SEMR_2019_16_a52
D. I. Sabitov; I. Kh. Sabitov. Volume polynomials for polyhedra combinatorially isometric to $n$-prisms in the cases $n=5,6,7$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 439-448. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a52/
[1] I. Kh. Sabitov, “The volume of a polyhedron as a function of its metric”, Fundam. i prikladnaya matematica, 2:4 (1996), 1235–1246 | MR | Zbl
[2] I. Kh. Sabitov, “A generalized Heron–Tataglia formula and some its consequences”, Mathem. sbornik, 189:10 (1998), 105–134 | MR | Zbl
[3] I. Kh. Sabitov, “The volume as a metric invariant of polyhedra”, Discrete and Computatioal Geometry, 20:4 (1998), 405–425 | DOI | MR | Zbl
[4] A.V. Astrelin, I.Kh. Sabitov, “A canonical polynomial for the volume of a polyheron”, Uspekhi math. nauk, 54:2 (1999), 165–166 | DOI | MR | Zbl
[5] I.Kh. Sabitov, “Algebraic methodes for solution of polyhedra”, Uspekhi math. nauk, 66:3 (2011), 3–66 | DOI | MR | Zbl
[6] D.I. Sabitov, I.Kh. Sabitov, “Volume polynomials for polyhedra of hexagonal type”, Siberian Electronic Mathematical Reports, 14 (2017), 1078–1087 | MR | Zbl
[7] A.V. Astrelin, I.Kh. Sabitov, “A minimal-degree polynomial for detemining the volume of an octahedron from its metrice”, Uspekhi math. nauk, 50:5 (1995), 245–246 | MR | Zbl
[8] D.I. Sabitov, I.Kh. Sabitov, “Volume polynomials for some polyhedra in spaces of constant curvature”, Modelirovanie i analys informatsionnykh system, 19:6 (2012), 159–167
[9] N.P. Dolbilin, M.A. Shtan'ko, M.I. Shtogrin, “On rigidity of polyhedral spheres with even-angle faces”, Uspekhi math. nauk, 51:3 (1996), 197–198 | DOI | MR | Zbl
[10] N.P. Dolbilin, M.A. Shtan'ko, M.I. Shtogrin, “Rigidity of a quadrillage of the torus”, Uspekhi math. nauk, 54:4 (1999), 167–168 | DOI | MR | Zbl
[11] M.I. Shtogrin, “Rigidity of a quadrillage of the pretzel”, Uspekhi math. nauk, 54:5 (1999), 183–184 | DOI | MR | Zbl
[12] V.A. Alexandrov, “A new example of a flexing polyhedron”, Sibirskii matem. jurnal, 36:6 (1995), 1215–1224 | MR
[13] M.I. Shtogrin, “On flexible polyhedral surfaces”, Trudy MIAN imeni Steklova, 288, 2015, 171–183 | MR | Zbl