Volume polynomials for polyhedra combinatorially isometric to $n$-prisms in the cases $n=5,6,7$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 439-448

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an algorithm for an explicit construction of the canonical volume polynomials for polyhedra combinatorially isomorphic to an $n$-prism in the cases $n=5,6$ and $n=7$ and realize them in the case of some special values of edge lengths.
Keywords: $n$-prism-type polyhedra
Mots-clés : volume, polynomial equation.
@article{SEMR_2019_16_a52,
     author = {D. I. Sabitov and I. Kh. Sabitov},
     title = {Volume polynomials for polyhedra combinatorially isometric to $n$-prisms in the cases $n=5,6,7$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {439--448},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a52/}
}
TY  - JOUR
AU  - D. I. Sabitov
AU  - I. Kh. Sabitov
TI  - Volume polynomials for polyhedra combinatorially isometric to $n$-prisms in the cases $n=5,6,7$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 439
EP  - 448
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a52/
LA  - ru
ID  - SEMR_2019_16_a52
ER  - 
%0 Journal Article
%A D. I. Sabitov
%A I. Kh. Sabitov
%T Volume polynomials for polyhedra combinatorially isometric to $n$-prisms in the cases $n=5,6,7$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 439-448
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a52/
%G ru
%F SEMR_2019_16_a52
D. I. Sabitov; I. Kh. Sabitov. Volume polynomials for polyhedra combinatorially isometric to $n$-prisms in the cases $n=5,6,7$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 439-448. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a52/