Four-dimensional metric Lie groups with zero Schouten--Weyl tensor
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 271-330

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate a left-invariant (pseudo)Riemannian metrics on four-dimensional Lie groups with zero Schouten–Weyl tensor. A complete classification of metric Lie algebras of such Lie groups is obtained.
Keywords: left-invariant (pseudo)Riemannian metrics, Lie groups, Ricci operator, Segre types.
Mots-clés : Schouten–Weyl tensor
@article{SEMR_2019_16_a50,
     author = {P. N. Klepikov},
     title = {Four-dimensional metric {Lie} groups with zero {Schouten--Weyl} tensor},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {271--330},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a50/}
}
TY  - JOUR
AU  - P. N. Klepikov
TI  - Four-dimensional metric Lie groups with zero Schouten--Weyl tensor
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 271
EP  - 330
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a50/
LA  - ru
ID  - SEMR_2019_16_a50
ER  - 
%0 Journal Article
%A P. N. Klepikov
%T Four-dimensional metric Lie groups with zero Schouten--Weyl tensor
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 271-330
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a50/
%G ru
%F SEMR_2019_16_a50
P. N. Klepikov. Four-dimensional metric Lie groups with zero Schouten--Weyl tensor. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 271-330. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a50/