A statistical test for the Zipf's law by deviations from the Heaps' law
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1822-1832

Voir la notice de l'article provenant de la source Math-Net.Ru

We explore a probabilistic model of an artistic text: words of the text are chosen independently of each other in accordance with a discrete probability distribution on an infinite dictionary. The words are enumerated 1, 2, $\ldots$, and the probability of appearing the $i$'th word is asymptotically a power function. Bahadur proved that in this case the number of different words as a function of the length of the text, again, asymptotically behaves like a power function. On the other hand, in the applied statistics community there are statements known as the Zipf’s and Heaps’ laws that are supported by empirical observations. We highlight the links between Bahadur results and Zipf's/Heaps' laws, and introduce and analyse a corresponding statistical test.
Keywords: Zipf's law, Heaps' law, weak convergence.
@article{SEMR_2019_16_a48,
     author = {M. G. Chebunin and A. P. Kovalevskii},
     title = {A statistical test for the {Zipf's} law by deviations from the {Heaps'} law},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1822--1832},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a48/}
}
TY  - JOUR
AU  - M. G. Chebunin
AU  - A. P. Kovalevskii
TI  - A statistical test for the Zipf's law by deviations from the Heaps' law
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1822
EP  - 1832
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a48/
LA  - en
ID  - SEMR_2019_16_a48
ER  - 
%0 Journal Article
%A M. G. Chebunin
%A A. P. Kovalevskii
%T A statistical test for the Zipf's law by deviations from the Heaps' law
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1822-1832
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a48/
%G en
%F SEMR_2019_16_a48
M. G. Chebunin; A. P. Kovalevskii. A statistical test for the Zipf's law by deviations from the Heaps' law. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1822-1832. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a48/