Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a43, author = {A. A. Mogulskii and E. I. Prokopenko}, title = {Large deviation principle for multidimensional second compound renewal processes in the phase space}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1478--1492}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a43/} }
TY - JOUR AU - A. A. Mogulskii AU - E. I. Prokopenko TI - Large deviation principle for multidimensional second compound renewal processes in the phase space JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1478 EP - 1492 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a43/ LA - ru ID - SEMR_2019_16_a43 ER -
%0 Journal Article %A A. A. Mogulskii %A E. I. Prokopenko %T Large deviation principle for multidimensional second compound renewal processes in the phase space %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 1478-1492 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a43/ %G ru %F SEMR_2019_16_a43
A. A. Mogulskii; E. I. Prokopenko. Large deviation principle for multidimensional second compound renewal processes in the phase space. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1478-1492. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a43/
[1] A.A. Borovkov, A.A. Mogulskii, “Integro-local limit theorems for compound renewal processes with Cramer's condition. I”, Siberian Mathematical Journal, 59:3 (2018), 491–514 | MR
[2] A.A. Borovkov, A.A. Mogulskii, “Integro-local limit theorems for compound renewal processes with Cramer's condition. II”, Siberian Mathematical Journal, 59:4 (2018), 731–750 | MR
[3] A.A. Mogulskii, E.I. Prokopenko, “The rate function and the fundamental function for multidimensional compound renewal process”, Siberian Electronic Mathematical Reports, 16 (2019), 1449–1463 | Zbl
[4] A.A. Mogulskii, E.I. Prokopenko, “Large deviation principle for multidimensional first compound renewal processes in the phase space”, Siberian Electronic Mathematical Reports, 16 (2019), 1464–1477 | Zbl
[5] R. Lefevere, M. Mariani, L. Zambotti, “Large deviations for renewal processes”, Stochastic Processes and their Applications, 121:10 (2011), 2243–2271 | MR | Zbl
[6] A.A. Borovkov, A.A. Mogulskii, “Large deviation principles for the finite-dimensional distributions of compound renewal processes”, Sib. Math. J., 56:1 (2015), 28–53 | MR | Zbl
[7] A.A. Borovkov, A.A. Mogulskii, E.I. Prokopenko, “Properties of the deviation rate function and the asimptotics for the Laplace transform of the distribution of a compound renewal process”, Teor. Veroyatnost. i Primenen., 64:4 (2019), 625–641 | MR
[8] B. Tsirelson, “From uniform renewal theorem to uniform large and moderate deviations for renewal-reward processes”, Electron. Commun. Probab., 18:52 (2013), 1–13 | MR
[9] A.A. Borovkov, Asymptotic analysis of random walks. Rapidly decreasing distributions of increments, Fizmatlit, M., 2013 | Zbl
[10] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Springer-Verlag, Berlin, 2010 | MR | Zbl
[11] Rockafellar R. T., Convex Analysis, Princeton University Press, Princeton, N.J., 1970 | MR | Zbl
[12] A.A. Borovkov, Probability Theory, Springer-Verlag, London, 2013 | MR | Zbl
[13] A.A. Borovkov, A.A. Mogulskii, “The second rate function and the asymptotic problems of renewal and hitting the boundary for multidimensional random walks”, Sib. Math. J., 37:4 (1996), 647–682 | MR | Zbl