The rate function and the fundamental function for multidimensional compound renewal process
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1449-1463

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two multidimensional compound renewal processes $\mathbf{Z}(t)$ and $\mathbf{Y}(t)$. Assuming that the increments satisfy the Cramer's condition, we define and investigate the rate functions and the fundamental functions for the processes $\mathbf{Z}(t)$ and $\mathbf{Y}(t)$.
Keywords: compound multidimensional renewal process, large deviations, Cramer's condition, deviation (rate) function, fundamental function
Mots-clés : Legendre transformation.
@article{SEMR_2019_16_a41,
     author = {A. A. Mogulskii and E. I. Prokopenko},
     title = {The rate function and the fundamental function for multidimensional compound renewal process},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1449--1463},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a41/}
}
TY  - JOUR
AU  - A. A. Mogulskii
AU  - E. I. Prokopenko
TI  - The rate function and the fundamental function for multidimensional compound renewal process
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1449
EP  - 1463
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a41/
LA  - ru
ID  - SEMR_2019_16_a41
ER  - 
%0 Journal Article
%A A. A. Mogulskii
%A E. I. Prokopenko
%T The rate function and the fundamental function for multidimensional compound renewal process
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1449-1463
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a41/
%G ru
%F SEMR_2019_16_a41
A. A. Mogulskii; E. I. Prokopenko. The rate function and the fundamental function for multidimensional compound renewal process. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1449-1463. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a41/