The rate function and the fundamental function for multidimensional compound renewal process
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1449-1463.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two multidimensional compound renewal processes $\mathbf{Z}(t)$ and $\mathbf{Y}(t)$. Assuming that the increments satisfy the Cramer's condition, we define and investigate the rate functions and the fundamental functions for the processes $\mathbf{Z}(t)$ and $\mathbf{Y}(t)$.
Keywords: compound multidimensional renewal process, large deviations, Cramer's condition, deviation (rate) function, fundamental function
Mots-clés : Legendre transformation.
@article{SEMR_2019_16_a41,
     author = {A. A. Mogulskii and E. I. Prokopenko},
     title = {The rate function and the fundamental function for multidimensional compound renewal process},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1449--1463},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a41/}
}
TY  - JOUR
AU  - A. A. Mogulskii
AU  - E. I. Prokopenko
TI  - The rate function and the fundamental function for multidimensional compound renewal process
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1449
EP  - 1463
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a41/
LA  - ru
ID  - SEMR_2019_16_a41
ER  - 
%0 Journal Article
%A A. A. Mogulskii
%A E. I. Prokopenko
%T The rate function and the fundamental function for multidimensional compound renewal process
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1449-1463
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a41/
%G ru
%F SEMR_2019_16_a41
A. A. Mogulskii; E. I. Prokopenko. The rate function and the fundamental function for multidimensional compound renewal process. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1449-1463. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a41/

[1] A.A. Borovkov, A.A. Mogulskii, “Integro-local limit theorems for compound renewal processes with Cramer's condition. I”, Siberian Mathematical Journal, 59:3 (2018), 491–513 | MR | Zbl

[2] A.A. Borovkov, A.A. Mogulskii, “Integro-local limit theorems for compound renewal processes with Cramer's condition. II”, Siberian Mathematical Journal, 59:4 (2018), 731–750 | MR

[3] A.A. Borovkov, Probability Theory, Springer-Verlag, London, 2013 | MR | Zbl

[4] A.A. Borovkov, Asymptotic analysis of random walks. Rapidly decreasing distributions of increments, Fizmatlit, M., 2013 | Zbl

[5] A.A. Borovkov, A.A. Mogulskii, “The second rate function and the asymptotic problems of renewal and hitting the boundary for multidimensional random walks”, Sib. Math. J., 37:4 (1996), 647–682 | MR | Zbl

[6] A.A. Borovkov, A.A. Mogulskii, E.I. Prokopenko, “Asymptotics of Laplace transform for compound renewal process”, Teor. Veroyatnost. i Primenen., 64:4 (2019) | Zbl

[7] A.A. Mogulskii, E.I. Prokopenko, “Large deviation principle for multidimensional first compound renewal processes in the phase space”, Siberian Electronic Mathematical Reports, 16 (2019), 1464–1477 | Zbl

[8] A.A. Borovkov, A.A. Mogulskii, E.I. Prokopenko, “Properties of the deviation rate function and the asimptotics for the Laplace transform of the distribution of a compound renewal process”, Teor. Veroyatnost. i Primenen., 64:4 (2019), 625–641 | MR

[9] R. Lefevere, M. Mariani, L. Zambotti, “Large deviations for renewal processes”, Stochastic Processes and their Applications, 121:10 (2011), 2243–2271 | MR | Zbl

[10] Rockafellar R. T., Convex Analysis, Princeton University Press, Princeton, N.J., 1970 | MR | Zbl

[11] B. Tsirelson, “From uniform renewal theorem to uniform large and moderate deviations for renewal-reward processes”, Electron. Commun. Probab., 18:52 (2013), 1–13 | MR