Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a40, author = {N. S. Arkashov}, title = {The principle of invariance in the {Donsker} form to the partial sum processes of finite order moving averages}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1276--1288}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a40/} }
TY - JOUR AU - N. S. Arkashov TI - The principle of invariance in the Donsker form to the partial sum processes of finite order moving averages JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1276 EP - 1288 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a40/ LA - ru ID - SEMR_2019_16_a40 ER -
%0 Journal Article %A N. S. Arkashov %T The principle of invariance in the Donsker form to the partial sum processes of finite order moving averages %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 1276-1288 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a40/ %G ru %F SEMR_2019_16_a40
N. S. Arkashov. The principle of invariance in the Donsker form to the partial sum processes of finite order moving averages. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1276-1288. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a40/
[1] N. S. Arkashov, “The principle of invariance in the Strassen form to the partial sum processes of moving averages of finite order”, Sib. Elektron. Mat. Izv., 15 (2018), 1292–1300 | MR | Zbl
[2] N. S. Arkashov, “On a Method for the Probability and Statistical Analysis of the Density of Low Frequency Turbulent Plasma”, Computational Mathematics and Mathematical Physics, 59:3 (2019), 402–413 | DOI | MR | Zbl
[3] W. Feller, An Introduction to Probability Theory and Its Applications, v. II, John Wiley Sons, New York etc., 1971 | MR | Zbl
[4] A. I. Olemskoi, A. Ya. Flat, “Application of fractals in condensed-matter physics”, Phys. Usp., 36 (1993), 1087–1128 | DOI | MR
[5] R. R. Nigmatullin, “Fractional integral and its physical interpretation”, Theor. Math. Phys., 90:3 (1992), 242–251 | DOI | MR | Zbl
[6] N. S. Arkashov, V. A. Seleznev, “Formation of a relation of nonlocalities in the anomalous diffusion model”, Theoret. and Math. Phys., 193:1 (2017), 1508–1523 | DOI | MR | Zbl
[7] A. A. Borovkov, A. A. Mogulskii, A. I. Sakhanenko, “Limit theorems for random processes”, Probability Theory 7, Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya, 82, VINITI, M., 1995 | MR | Zbl
[8] Yu. A. Davydov, “The invariance principle for stationary processes”, Theory of Probability Its Applications, 15:3 (1970), 487–498 | DOI | MR | Zbl
[9] T. Konstantopoulos, A. Sakhanenko, “Convergence and convergence rate to fractional Brownian motion for weighted random sums”, Sib. Elektron. Mat. Izv., 1 (2004), 47–63 | MR | Zbl
[10] N. S. Arkashov, I. S. Borisov, “Gaussian approximation to the partial sum processes of moving averages”, Siberian Math. J., 45:6 (2004), 1000–1030 | DOI | MR | Zbl
[11] V. V. Petrov, Limit Theorems for the Sums of Independent Random Variables, Nauka, M., 1987 | MR | Zbl
[12] E. Seneta, Regularly Varying Functions, Nauka, M., 1985 | MR | Zbl
[13] I. A. Ibragimov, Yu. V. Linnik, Independent and Stationarily Connected Variables, Wolters-Noordhoff Publishing Company, Groningen, 1971 | MR | Zbl
[14] P. Billingsley, Convergence of Probability Measures, Wiley and Sons, New York etc., 1968 | MR | Zbl