Friedberg numberings of families of partial computable functionals
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 331-339

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider computable numberings of families of partial computable functionals of finite types. We show, that if a family of all partial computable functionals of type 0 has a computable Friedberg numbering, then family of all partial computable functionals of any given type also has computable Friedberg numbering. Furthermore, for a type $\sigma|\tau$ there are infinitely many nonequivalent computable minimal nonpositive, positive nondecidable and Friedberg numberings.
Keywords: partial computable functionals, computable morphisms, computable numberings, Rogers semilattice, minimal numbering, positive numbering, Friedberg numbering.
@article{SEMR_2019_16_a4,
     author = {S. S. Ospichev},
     title = {Friedberg numberings of families of partial computable functionals},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {331--339},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a4/}
}
TY  - JOUR
AU  - S. S. Ospichev
TI  - Friedberg numberings of families of partial computable functionals
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 331
EP  - 339
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a4/
LA  - ru
ID  - SEMR_2019_16_a4
ER  - 
%0 Journal Article
%A S. S. Ospichev
%T Friedberg numberings of families of partial computable functionals
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 331-339
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a4/
%G ru
%F SEMR_2019_16_a4
S. S. Ospichev. Friedberg numberings of families of partial computable functionals. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 331-339. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a4/