Local theorems for arithmetic compound renewal processes when Cramer's condition holds
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 21-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue the study of the compound reneal processes (c.r.p.), where the moment Cramer's condition holds (see [1]–[10], where the study of c.r.p. was started). In the paper arithmetic c.r.p. $Z(n)$ are studied. In such processes random vector $\xi = (\tau,\zeta)$ has the arithmetic distribution, where $\tau >0 $ defines the distance between jumps, $\zeta$ defines the values of jumps. For this processes the fine asymptotics in the local limit theorem for probabilities $\mathbf{P}(Z(n)=x)$ has been obtained in Cramer's deviation region of $x\in \mathbb{Z}$. In [6]–[10] the similar problem has benn solved for non-lattice c.r.p., when the vector $\xi=(\tau,\zeta)$ has the non-lattice distribution.
Mots-clés : обобщенный процесс восстановления, арифметический обобщенный процесс восстановления, функция (мера) восстановления, моментное условие Крамера; функция уклонений, вторая функция уклонений, большие уклонения; умеренные уклонения, локальная предельная теорема.
@article{SEMR_2019_16_a38,
     author = {A. A. Mogulskii},
     title = {Local theorems for arithmetic compound renewal processes when {Cramer's} condition holds},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {21--41},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a38/}
}
TY  - JOUR
AU  - A. A. Mogulskii
TI  - Local theorems for arithmetic compound renewal processes when Cramer's condition holds
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 21
EP  - 41
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a38/
LA  - ru
ID  - SEMR_2019_16_a38
ER  - 
%0 Journal Article
%A A. A. Mogulskii
%T Local theorems for arithmetic compound renewal processes when Cramer's condition holds
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 21-41
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a38/
%G ru
%F SEMR_2019_16_a38
A. A. Mogulskii. Local theorems for arithmetic compound renewal processes when Cramer's condition holds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 21-41. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a38/

[1] A.A. Borovkov, Asymptotic analysis of random walks. Rapidly decreasing distributions of increments, Fizmatlit, M., 2013 | Zbl

[2] A.A. Borovkov, A.A. Mogulskii, “Large deviation principles for the finite-dimensional distributions of compound renewal processes”, Sib. Math. J., 56:1 (2015), 28–53 | DOI | MR | Zbl

[3] A.A. Borovkov, A.A. Mogulskii, “Large Deviation Principles for Trajectories of Compound Renewal Processes. I”, Theory Probab. Appl., 60:2 (2016), 207–224 | DOI | MR | Zbl

[4] A.A. Borovkov, A.A. Mogulskii, “Large Deviation Principles for Trajectories of Compound Renewal Processes. II”, Theory Probab. Appl., 60:3 (2016), 349–366 | DOI | MR | Zbl

[5] A.A. Borovkov, “Large deviation principles in boundary problems for compound renewal processes”, Siberian Mathematical Journal, 57:3 (2016), 562–595 | DOI | MR | Zbl

[6] A.A. Borovkov, A.A. Mogulskii, “Integro-local limit theorems for compound renewal processes with Cramer's condition. I”, Siberian Mathematical Journal, 59:3 (2018), 491–514 | DOI | MR | Zbl

[7] A.A. Borovkov, A.A. Mogulskii, “Integro-local limit theorems for compound renewal processes with Cramer's condition. II”, Siberian Mathematical Journal, 59:4 (2018), 731–750 | DOI | MR | Zbl

[8] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I”, Siberian Electronic Mathematical Reports, 15 (2018), 475–502 | MR | Zbl

[9] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. II”, Siberian Electronic Mathematical Reports, 15 (2018), 475–502 | MR | Zbl

[10] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III”, Siberian Electronic Mathematical Reports, 15 (2018), 528–553 | MR | Zbl

[11] D.P. Koks, W. L. Smith, Renewal Theory, Russian translation, Sov. Radio, M., 1967 | MR

[12] S. Asmussen, H. Albrecher, Ruin Probabilities, Second Edition, Word Scientifics Publishing, Hackensack, 2010 | MR | Zbl

[13] A.A. Borovkov, A.A. Mogulskii, “Chebyshev-Type Exponential Inequalities for Sums of Random Vectors and for Trajectories of Random Walks”, Theory Probab. Appl., 56:1 (2012), 21–43 | DOI | MR | Zbl

[14] A.A. Borovkov, A.A. Mogulskii, “The second rate function and the asymptotic problems of renewal and hitting the boundary for multidimensional random walks”, Sib. Math. J., 37:4 (1996), 647–682 | DOI | MR | Zbl