Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a38, author = {A. A. Mogulskii}, title = {Local theorems for arithmetic compound renewal processes when {Cramer's} condition holds}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {21--41}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a38/} }
TY - JOUR AU - A. A. Mogulskii TI - Local theorems for arithmetic compound renewal processes when Cramer's condition holds JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 21 EP - 41 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a38/ LA - ru ID - SEMR_2019_16_a38 ER -
A. A. Mogulskii. Local theorems for arithmetic compound renewal processes when Cramer's condition holds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 21-41. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a38/
[1] A.A. Borovkov, Asymptotic analysis of random walks. Rapidly decreasing distributions of increments, Fizmatlit, M., 2013 | Zbl
[2] A.A. Borovkov, A.A. Mogulskii, “Large deviation principles for the finite-dimensional distributions of compound renewal processes”, Sib. Math. J., 56:1 (2015), 28–53 | DOI | MR | Zbl
[3] A.A. Borovkov, A.A. Mogulskii, “Large Deviation Principles for Trajectories of Compound Renewal Processes. I”, Theory Probab. Appl., 60:2 (2016), 207–224 | DOI | MR | Zbl
[4] A.A. Borovkov, A.A. Mogulskii, “Large Deviation Principles for Trajectories of Compound Renewal Processes. II”, Theory Probab. Appl., 60:3 (2016), 349–366 | DOI | MR | Zbl
[5] A.A. Borovkov, “Large deviation principles in boundary problems for compound renewal processes”, Siberian Mathematical Journal, 57:3 (2016), 562–595 | DOI | MR | Zbl
[6] A.A. Borovkov, A.A. Mogulskii, “Integro-local limit theorems for compound renewal processes with Cramer's condition. I”, Siberian Mathematical Journal, 59:3 (2018), 491–514 | DOI | MR | Zbl
[7] A.A. Borovkov, A.A. Mogulskii, “Integro-local limit theorems for compound renewal processes with Cramer's condition. II”, Siberian Mathematical Journal, 59:4 (2018), 731–750 | DOI | MR | Zbl
[8] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I”, Siberian Electronic Mathematical Reports, 15 (2018), 475–502 | MR | Zbl
[9] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. II”, Siberian Electronic Mathematical Reports, 15 (2018), 475–502 | MR | Zbl
[10] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III”, Siberian Electronic Mathematical Reports, 15 (2018), 528–553 | MR | Zbl
[11] D.P. Koks, W. L. Smith, Renewal Theory, Russian translation, Sov. Radio, M., 1967 | MR
[12] S. Asmussen, H. Albrecher, Ruin Probabilities, Second Edition, Word Scientifics Publishing, Hackensack, 2010 | MR | Zbl
[13] A.A. Borovkov, A.A. Mogulskii, “Chebyshev-Type Exponential Inequalities for Sums of Random Vectors and for Trajectories of Random Walks”, Theory Probab. Appl., 56:1 (2012), 21–43 | DOI | MR | Zbl
[14] A.A. Borovkov, A.A. Mogulskii, “The second rate function and the asymptotic problems of renewal and hitting the boundary for multidimensional random walks”, Sib. Math. J., 37:4 (1996), 647–682 | DOI | MR | Zbl