Large deviations for processes on half-line: Random Walk and Compound Poisson Process
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish, under the Cramer exponential moment condition in a neighbourhood of zero, the Extended Large Deviation Principle for the Random Walk and the Compound Poisson processes in the metric space $\mathbb{V}$ of functions of finite variation on $[0,\infty)$ with the modified Borovkov metric.
Keywords: Large Deviations, Random Walk, Compound Poisson Process, Cramer's condition, rate function, Extended Large Deviation Principle.
@article{SEMR_2019_16_a37,
     author = {F. C. Klebaner and A. A. Mogulskii},
     title = {Large deviations for processes on half-line: {Random} {Walk} and {Compound} {Poisson} {Process}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1--20},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a37/}
}
TY  - JOUR
AU  - F. C. Klebaner
AU  - A. A. Mogulskii
TI  - Large deviations for processes on half-line: Random Walk and Compound Poisson Process
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1
EP  - 20
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a37/
LA  - en
ID  - SEMR_2019_16_a37
ER  - 
%0 Journal Article
%A F. C. Klebaner
%A A. A. Mogulskii
%T Large deviations for processes on half-line: Random Walk and Compound Poisson Process
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1-20
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a37/
%G en
%F SEMR_2019_16_a37
F. C. Klebaner; A. A. Mogulskii. Large deviations for processes on half-line: Random Walk and Compound Poisson Process. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1-20. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a37/

[1] Borovkov A. A., Probability Theory, 5th Ed., Springer, London, 2013 | MR | Zbl

[2] Borovkov A. A., “The convergence of distributions of functionals of stochastic processes”, Russ. Math. Surveys, 27:1 (1972), 3–41 | DOI | MR | Zbl

[3] Borovkov A. A., “On the rate of convergence for the invariance principle”, Theory Probab. Appl., 18:2 (1973), 217–234 | MR | Zbl

[4] Borovkov A. A., Mogulskii A. A., “On large deviation principles in metric spaces”, Sibirsk. Mat. Zh., 51:6 (2010), 1251–1269 | MR | Zbl

[5] Borovkov A. A., Asymptotic Analysis of Random Walks. Rapidly Decreasing Jumps, Fizmathlit, M., 2013 (in Russian) | Zbl

[6] Borovkov A. A., Mogulskii A. A., “Large deviation principles for random walk trajectories. I, II, III”, Theory Probab. Appl., 56:4 (2011), 627—655 ; 57:1 (2012), 3—34 ; 58:1 (2013), 37—52 | MR | MR | MR

[7] Dembo A., Zeitouni O., Large Deviations Techniques and Application, 2nd edition, Springer, New York, 1998 | MR

[8] Dobrushin R. L., Pecherskij E. A., “Large deviations for random processes with independent increments on infinite intervals”, Probl. Inf. Transm., 34:4 (1998), 354–382 | MR | Zbl

[9] Feng J., Kurtz T., Large deviations for stochastic processes, Mathematical Surveys and Monographs, 131, American Mathematical Society, Providence, RI, 2006 | DOI | MR | Zbl

[10] Lynch J., Sethuraman J., “Large Deviations for Processes with independent Increments”, Ann. Probab., 15:2 (1987), 610–627 | DOI | MR | Zbl

[11] Mogulskii A. A., “Large deviation principle for Compound Poisson process”, Math. trudy, 19:2 (2016), 119—157 | MR | Zbl

[12] Klebaner F. C., Logachev A. V., Mogulskii A. A., “Large deviations for processes on half line”, Electronic Communications in Probability, 20 (2015), 75 | DOI | MR | Zbl

[13] Puhalskii A. A., Large deviations and idempotent probability, Chapman and Hall/ CRC Monographs and Surveys in Pure and Applied Mathematics, 119, Chapman and Hall/ CRC, Boca Raton, FL, 2001 | MR | Zbl

[14] Puhalskii A. A., “Large deviations for stochastic processes”, LMS/EPSRC Short Course: Stochastic Stability, Large Deviations and Coupling Methods (Heriot-Watt University, Edinburgh, 4–6 September 2006)

[15] Skorohod A. V., “Limit theorems for stochastic processes”, Theory Probab. Appl., 1:3 (1956), 261–290 | DOI | MR