Large deviations for processes on half-line: Random Walk and Compound Poisson Process
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1-20

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish, under the Cramer exponential moment condition in a neighbourhood of zero, the Extended Large Deviation Principle for the Random Walk and the Compound Poisson processes in the metric space $\mathbb{V}$ of functions of finite variation on $[0,\infty)$ with the modified Borovkov metric.
Keywords: Large Deviations, Random Walk, Compound Poisson Process, Cramer's condition, rate function, Extended Large Deviation Principle.
@article{SEMR_2019_16_a37,
     author = {F. C. Klebaner and A. A. Mogulskii},
     title = {Large deviations for processes on half-line: {Random} {Walk} and {Compound} {Poisson} {Process}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1--20},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a37/}
}
TY  - JOUR
AU  - F. C. Klebaner
AU  - A. A. Mogulskii
TI  - Large deviations for processes on half-line: Random Walk and Compound Poisson Process
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1
EP  - 20
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a37/
LA  - en
ID  - SEMR_2019_16_a37
ER  - 
%0 Journal Article
%A F. C. Klebaner
%A A. A. Mogulskii
%T Large deviations for processes on half-line: Random Walk and Compound Poisson Process
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1-20
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a37/
%G en
%F SEMR_2019_16_a37
F. C. Klebaner; A. A. Mogulskii. Large deviations for processes on half-line: Random Walk and Compound Poisson Process. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1-20. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a37/