On the Cayley--Dickson process for dialgebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2110-2123.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the dialgebras, which are obtained by the Cayley–Dickson process from the two-dimensional commutative associative dialgebra ${\mathcal D}$, are disimple noncommutative Jordan dialgebras. Furthermore, a decomposition holds for them into the direct sum of a composition algebra and the equating ideal of the dialgebra.
Keywords: Cayley–Dickson process, flexible algebra, involution, noncommutative Jordan algebra
Mots-clés : dialgebra, disimple dialgebra, composition algebra.
@article{SEMR_2019_16_a36,
     author = {A. P. Pozhidaev},
     title = {On the {Cayley--Dickson} process for dialgebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {2110--2123},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a36/}
}
TY  - JOUR
AU  - A. P. Pozhidaev
TI  - On the Cayley--Dickson process for dialgebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 2110
EP  - 2123
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a36/
LA  - en
ID  - SEMR_2019_16_a36
ER  - 
%0 Journal Article
%A A. P. Pozhidaev
%T On the Cayley--Dickson process for dialgebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 2110-2123
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a36/
%G en
%F SEMR_2019_16_a36
A. P. Pozhidaev. On the Cayley--Dickson process for dialgebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2110-2123. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a36/

[1] J. L. Loday, “Dialgebras”: J. L. Loday, A. Frabetti, F. Chapoton, F. Goichot, Dialgebras and related operads, Lect. Notes Math., 1763, Springer-Verl., Berlin, 2001, 7–66 | DOI | MR | Zbl

[2] P. S. Kolesnikov, “Varieties of dialgebras and conformal algebras”, Sib. Mat. Zh., 49:2 (2008), 322–339 | DOI | MR | Zbl

[3] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, A. I. Shirshov, “Rings that are Nearly Associative”, Pure and Applied Mathematics, 104, Acad. Press, N.Y., 1982 | MR | Zbl

[4] R. D. Schafer, An introduction to nonassociative algebras, Acad. Press, London, 1966 | MR | Zbl

[5] R. Velasquez, R. Felipe, “Quasi-Jordan algebras”, Comm. Algebra, 36:4 (2008), 1580–1602 | DOI | MR | Zbl

[6] R. Velasquez, R. Felipe, “Split dialgebras, split quasi-Jordan algebras and regular elements”, J. Algebra Apl., 8:2 (2009), 191–218 | DOI | MR | Zbl

[7] R. Felipe, “Restrictive, split and unital quasi-Jordan algebras”, J. Algebra, 335:1 (2011), 1–17 | DOI | MR | Zbl

[8] R. Felipe-Sosa, R. Felipe, J. Sanchez-Ortega, M. R. Bremner, M. K. Kinyon, “The Cayley-Dickson process for dialgebras”, Linear Multilinear Algebra, 62:6 (2014), 811–830 | DOI | MR | Zbl

[9] V. Yu. Gubarev, P. S. Kolesnikov, “Operads of decorated trees and their duals”, Commentat. Math. Univ. Carol., 55:4 (2014), 421–445 | MR | Zbl

[10] A. P. Pozhidaev, “0-Dialgebras with bar-unity and nonassociative Rota-Baxter algebras”, Sib. Mat. Zh., 50:6 (2009), 1356–1369 | DOI | MR | Zbl

[11] D. Liu, “Steinberg-Leibniz algebras and superalgebras”, J. Algebra, 283:1 (2005), 199–221 | DOI | MR | Zbl

[12] A. P. Pozhidaev, Algebraical systems of Lie type, Doctoral Thesis, Novosibirsk, 2010, 230 pp. (in Russian)