Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a36, author = {A. P. Pozhidaev}, title = {On the {Cayley--Dickson} process for dialgebras}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {2110--2123}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a36/} }
A. P. Pozhidaev. On the Cayley--Dickson process for dialgebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2110-2123. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a36/
[1] J. L. Loday, “Dialgebras”: J. L. Loday, A. Frabetti, F. Chapoton, F. Goichot, Dialgebras and related operads, Lect. Notes Math., 1763, Springer-Verl., Berlin, 2001, 7–66 | DOI | MR | Zbl
[2] P. S. Kolesnikov, “Varieties of dialgebras and conformal algebras”, Sib. Mat. Zh., 49:2 (2008), 322–339 | DOI | MR | Zbl
[3] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, A. I. Shirshov, “Rings that are Nearly Associative”, Pure and Applied Mathematics, 104, Acad. Press, N.Y., 1982 | MR | Zbl
[4] R. D. Schafer, An introduction to nonassociative algebras, Acad. Press, London, 1966 | MR | Zbl
[5] R. Velasquez, R. Felipe, “Quasi-Jordan algebras”, Comm. Algebra, 36:4 (2008), 1580–1602 | DOI | MR | Zbl
[6] R. Velasquez, R. Felipe, “Split dialgebras, split quasi-Jordan algebras and regular elements”, J. Algebra Apl., 8:2 (2009), 191–218 | DOI | MR | Zbl
[7] R. Felipe, “Restrictive, split and unital quasi-Jordan algebras”, J. Algebra, 335:1 (2011), 1–17 | DOI | MR | Zbl
[8] R. Felipe-Sosa, R. Felipe, J. Sanchez-Ortega, M. R. Bremner, M. K. Kinyon, “The Cayley-Dickson process for dialgebras”, Linear Multilinear Algebra, 62:6 (2014), 811–830 | DOI | MR | Zbl
[9] V. Yu. Gubarev, P. S. Kolesnikov, “Operads of decorated trees and their duals”, Commentat. Math. Univ. Carol., 55:4 (2014), 421–445 | MR | Zbl
[10] A. P. Pozhidaev, “0-Dialgebras with bar-unity and nonassociative Rota-Baxter algebras”, Sib. Mat. Zh., 50:6 (2009), 1356–1369 | DOI | MR | Zbl
[11] D. Liu, “Steinberg-Leibniz algebras and superalgebras”, J. Algebra, 283:1 (2005), 199–221 | DOI | MR | Zbl
[12] A. P. Pozhidaev, Algebraical systems of Lie type, Doctoral Thesis, Novosibirsk, 2010, 230 pp. (in Russian)