Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang--Baxter equation on quadratic Lie algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2098-2109

Voir la notice de l'article provenant de la source Math-Net.Ru

We study possible connections between Rota-Baxter operators of non-zero weight and non-skew-symmetric solutions of the classical Yang–Baxter equation on finite-dimensional quadratic Lie algebras. The particular attention is made to the case when for a solution $r$ the element $r+\tau(r)$ is $L$-invariant.
Keywords: Rota–Baxter operator, quadratic Lie algebra, non-associative bialgebra, classical Yang–Baxter equation.
@article{SEMR_2019_16_a35,
     author = {M. E. Goncharov},
     title = {Rota-Baxter operators and non-skew-symmetric solutions of the classical {Yang--Baxter} equation on quadratic {Lie} algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {2098--2109},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a35/}
}
TY  - JOUR
AU  - M. E. Goncharov
TI  - Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang--Baxter equation on quadratic Lie algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 2098
EP  - 2109
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a35/
LA  - en
ID  - SEMR_2019_16_a35
ER  - 
%0 Journal Article
%A M. E. Goncharov
%T Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang--Baxter equation on quadratic Lie algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 2098-2109
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a35/
%G en
%F SEMR_2019_16_a35
M. E. Goncharov. Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang--Baxter equation on quadratic Lie algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2098-2109. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a35/