Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang--Baxter equation on quadratic Lie algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2098-2109.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study possible connections between Rota-Baxter operators of non-zero weight and non-skew-symmetric solutions of the classical Yang–Baxter equation on finite-dimensional quadratic Lie algebras. The particular attention is made to the case when for a solution $r$ the element $r+\tau(r)$ is $L$-invariant.
Keywords: Rota–Baxter operator, quadratic Lie algebra, non-associative bialgebra, classical Yang–Baxter equation.
@article{SEMR_2019_16_a35,
     author = {M. E. Goncharov},
     title = {Rota-Baxter operators and non-skew-symmetric solutions of the classical {Yang--Baxter} equation on quadratic {Lie} algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {2098--2109},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a35/}
}
TY  - JOUR
AU  - M. E. Goncharov
TI  - Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang--Baxter equation on quadratic Lie algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 2098
EP  - 2109
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a35/
LA  - en
ID  - SEMR_2019_16_a35
ER  - 
%0 Journal Article
%A M. E. Goncharov
%T Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang--Baxter equation on quadratic Lie algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 2098-2109
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a35/
%G en
%F SEMR_2019_16_a35
M. E. Goncharov. Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang--Baxter equation on quadratic Lie algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2098-2109. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a35/

[1] G. Baxter, “An analytic problem whose solution follows from a simple algebraic identity”, Pacific J. Math., 10 (1960), 731–742 | DOI | MR | Zbl

[2] F.V. Atkinson, “Some aspects of Baxter's functional equation”, J. Math. Anal. Appl., 7 (1963), 1–30 | DOI | MR | Zbl

[3] G.C. Rota, “Baxter algebras and combinatorial identities I and II”, Bull. Amer. Math. Soc., 75 (1969), 325–334 | DOI | MR

[4] J.B. Miller, “Some properties of Baxter operators”, Acta Math. Acad. Sci. Hungar., 17 (1966), 387–400 | DOI | MR | Zbl

[5] P. Cartier, “On the structure of free Baxter algebras”, Adv. Math., 9 (1972), 253–265 | DOI | MR | Zbl

[6] L. Guo, An Introduction to Rota–Baxter Algebra, Surveys of Modern Mathematics, 4, International Press, Somerville, MA; Higher education press, Beijing, 2012 | MR | Zbl

[7] A.A. Belavin, V.G. Drinfeld, “Solutions of the classical Yang–Baxter equation for simple Lie algebras”, Funct. Anal. Appl., 16:3 (1982), 159–180 | DOI | MR

[8] M.A. Semenov-Tyan-Shanskii, “What a classical r-matrix is”, Funct. Anal. Appl., 17:4 (1983), 259–272 | DOI | MR

[9] M.E. Goncharov, “On Rota-Baxter operators of non-zero weight arisen from the solutions of the classical Yang-Baxter equation”, Sib. El. Math. Rep., 14 (2017), 1533–1544 | MR | Zbl

[10] V.G. Drinfeld, “Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang—Baxter equation”, Sov. Math. Dokl., 27 (1983), 68–71 | MR | Zbl

[11] J.A. Anquela, T. Cortes, F. Montaner, “Nonassociative Coalgebras”, Comm. Algebra, 22:12 (1994), 4693–4716 | DOI | MR | Zbl

[12] V.N. Zhelyabin, “Jordan bialgebras of symmetric elements and Lie bialgebras”, Sib. Math. J., 39:2 (1998), 261–276 | DOI | MR | Zbl

[13] V.N. Zhelyabin, “On a class of Jourdan D-bialgebras”, St. Petersburg Mathematical Journal, 11:4 (2000), 589–609 | MR

[14] V.V. Vershinin, “On Poisson–Malcev Structures”, Acta Applicandae Mathematicae, 75 (2003), 281–292 | DOI | MR | Zbl

[15] M. Aguiar, “On the associative analog of Lie bialgebras”, Journal of Algebra, 244 (2001), 492–532 | DOI | MR | Zbl

[16] A. Polishchuk, “Clasic Yang—Baxter Equation and the A-constraint”, Advances in Mathematics, 168:1 (2002), 56–96 | DOI | MR

[17] M.E. Goncharov, “The classical Yang—Baxter equation on alternative algebras: The alternative D-bialgebra structure on Cayley–Dickson matrix algebras”, Sib. Math. J., 48:5 (2007), 809–823 | DOI | MR | Zbl

[18] M.E. Goncharov, “Structures of Malcev Bialgebras on a Simple Non-Lie Malcev Algebra”, Commun. Algebra, 40:8 (2012), 3071–3094 | DOI | MR | Zbl

[19] C. Bai, L. Guo, X. Ni, “Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and Post Lie algebras”, Comm. Math. Phys., 297 (2010), 553–596 | DOI | MR | Zbl

[20] C. Bai, L. Guo, X. Ni, “Generalizations of the classical Yang-Baxter equation and ${O}$-operators”, J. Math. Phys., 52:6 (2011), 063515 | DOI | MR | Zbl

[21] I. Bajo, S. Benayadi, “Lie algebras admitting a unique quadratic structure”, Commun. Algebra, 25:9 (1997), 2795–2805 | DOI | MR | Zbl