Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a34, author = {E. P. Petrov}, title = {On the standard identity in a finitely generated nilpotent algebra $R$ over an arbitrary field with condition $\dim R^{N}/R^{N+1} = 2$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1981--2002}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a34/} }
TY - JOUR AU - E. P. Petrov TI - On the standard identity in a finitely generated nilpotent algebra $R$ over an arbitrary field with condition $\dim R^{N}/R^{N+1} = 2$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1981 EP - 2002 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a34/ LA - ru ID - SEMR_2019_16_a34 ER -
%0 Journal Article %A E. P. Petrov %T On the standard identity in a finitely generated nilpotent algebra $R$ over an arbitrary field with condition $\dim R^{N}/R^{N+1} = 2$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 1981-2002 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a34/ %G ru %F SEMR_2019_16_a34
E. P. Petrov. On the standard identity in a finitely generated nilpotent algebra $R$ over an arbitrary field with condition $\dim R^{N}/R^{N+1} = 2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1981-2002. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a34/
[1] V.A. Andrunakievich (ed.), The Dniester Notebook (Unsolved problems in the theory of rings, modules), Third edition, Akad. Nauk SSSR, Sib. Otd., Inst. Mat., Novosibirsk, 1982 | MR | Zbl
[2] S. A. Pikhtil'kov, On varieties generated by n-dimensional algebras, Manuscript deposited at VINITI, Dep. 1213-80, Tula Polytechnic Inst., Tula, 1980
[3] Yu. N. Mal'tsev, “On identities of nilpotent algebras”, Izv. Vyssh. Uchebn. Zaved., Mat., 9 (1986), 68–72 | MR | Zbl
[4] I. L. Guseva, “On identities of finite-dimensional nilpotent algebras”, Internat. Conf. on Algebra, dedicated in the memory A.I. Mal'tsev (August 1989), Novosibirsk, 43 | Zbl
[5] Kruse R. L., Price D. T., Nilpotent rings, Gordon and Breach, New York, 1969 | MR | Zbl
[6] E. P. Petrov, “On identities of finite-dimensional nilpotent algebras”, Algebra i Logika, 30:5 (1991), 540–556 | MR | Zbl
[7] E. P. Petrov, “Defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim R^{2}/R^{3} = 2$”, Siberian Electronic Mathematical Reports, 13 (2016), 1052–1066 | MR | Zbl
[8] E. P. Petrov, “Structure, defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim R^{N}/R^{N+1} = 2$”, Siberian Electronic Mathematical Reports, 14 (2017), 1153–1187 | MR | Zbl
[9] E. P. Petrov, “Defining relations and identities of finite-generated nilpotent algebra $R$ with condition $dim R^{N}/R^{N+1} = 2$”, Siberian Electronic Mathematical Reports, 15 (2018), 1048–1064 | MR | Zbl
[10] L. H. Rowen, Polynomial identities in ring theory, Academic Press, New York, 1980 | MR | Zbl