On the standard identity in a finitely generated nilpotent algebra $R$ over an arbitrary field with condition $\dim R^{N}/R^{N+1} = 2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1981-2002

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that $s$-generated nilpotent algebra $R$ over arbitrary field with condition $\dim R^{N}/R^{N+1} = 2$ for some natural number $N \geq 3$ satisfies the standard identity of degree $N+2$ if $s\geq N$, or the standard identity of smaller degree than $N$ if $s N$. The results of this article on a characteristic field other than 2 were obtained in a previous work by the author, published in SEMR.
Keywords: defining relations, identities, nilpotent algebra.
@article{SEMR_2019_16_a34,
     author = {E. P. Petrov},
     title = {On the standard identity in a finitely generated nilpotent algebra $R$ over an arbitrary field with condition $\dim R^{N}/R^{N+1} = 2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1981--2002},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a34/}
}
TY  - JOUR
AU  - E. P. Petrov
TI  - On the standard identity in a finitely generated nilpotent algebra $R$ over an arbitrary field with condition $\dim R^{N}/R^{N+1} = 2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1981
EP  - 2002
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a34/
LA  - ru
ID  - SEMR_2019_16_a34
ER  - 
%0 Journal Article
%A E. P. Petrov
%T On the standard identity in a finitely generated nilpotent algebra $R$ over an arbitrary field with condition $\dim R^{N}/R^{N+1} = 2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1981-2002
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a34/
%G ru
%F SEMR_2019_16_a34
E. P. Petrov. On the standard identity in a finitely generated nilpotent algebra $R$ over an arbitrary field with condition $\dim R^{N}/R^{N+1} = 2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1981-2002. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a34/