On the standard identity in a finitely generated nilpotent algebra $R$ over an arbitrary field with condition $\dim R^{N}/R^{N+1} = 2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1981-2002.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that $s$-generated nilpotent algebra $R$ over arbitrary field with condition $\dim R^{N}/R^{N+1} = 2$ for some natural number $N \geq 3$ satisfies the standard identity of degree $N+2$ if $s\geq N$, or the standard identity of smaller degree than $N$ if $s N$. The results of this article on a characteristic field other than 2 were obtained in a previous work by the author, published in SEMR.
Keywords: defining relations, identities, nilpotent algebra.
@article{SEMR_2019_16_a34,
     author = {E. P. Petrov},
     title = {On the standard identity in a finitely generated nilpotent algebra $R$ over an arbitrary field with condition $\dim R^{N}/R^{N+1} = 2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1981--2002},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a34/}
}
TY  - JOUR
AU  - E. P. Petrov
TI  - On the standard identity in a finitely generated nilpotent algebra $R$ over an arbitrary field with condition $\dim R^{N}/R^{N+1} = 2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1981
EP  - 2002
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a34/
LA  - ru
ID  - SEMR_2019_16_a34
ER  - 
%0 Journal Article
%A E. P. Petrov
%T On the standard identity in a finitely generated nilpotent algebra $R$ over an arbitrary field with condition $\dim R^{N}/R^{N+1} = 2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1981-2002
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a34/
%G ru
%F SEMR_2019_16_a34
E. P. Petrov. On the standard identity in a finitely generated nilpotent algebra $R$ over an arbitrary field with condition $\dim R^{N}/R^{N+1} = 2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1981-2002. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a34/

[1] V.A. Andrunakievich (ed.), The Dniester Notebook (Unsolved problems in the theory of rings, modules), Third edition, Akad. Nauk SSSR, Sib. Otd., Inst. Mat., Novosibirsk, 1982 | MR | Zbl

[2] S. A. Pikhtil'kov, On varieties generated by n-dimensional algebras, Manuscript deposited at VINITI, Dep. 1213-80, Tula Polytechnic Inst., Tula, 1980

[3] Yu. N. Mal'tsev, “On identities of nilpotent algebras”, Izv. Vyssh. Uchebn. Zaved., Mat., 9 (1986), 68–72 | MR | Zbl

[4] I. L. Guseva, “On identities of finite-dimensional nilpotent algebras”, Internat. Conf. on Algebra, dedicated in the memory A.I. Mal'tsev (August 1989), Novosibirsk, 43 | Zbl

[5] Kruse R. L., Price D. T., Nilpotent rings, Gordon and Breach, New York, 1969 | MR | Zbl

[6] E. P. Petrov, “On identities of finite-dimensional nilpotent algebras”, Algebra i Logika, 30:5 (1991), 540–556 | MR | Zbl

[7] E. P. Petrov, “Defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim R^{2}/R^{3} = 2$”, Siberian Electronic Mathematical Reports, 13 (2016), 1052–1066 | MR | Zbl

[8] E. P. Petrov, “Structure, defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim R^{N}/R^{N+1} = 2$”, Siberian Electronic Mathematical Reports, 14 (2017), 1153–1187 | MR | Zbl

[9] E. P. Petrov, “Defining relations and identities of finite-generated nilpotent algebra $R$ with condition $dim R^{N}/R^{N+1} = 2$”, Siberian Electronic Mathematical Reports, 15 (2018), 1048–1064 | MR | Zbl

[10] L. H. Rowen, Polynomial identities in ring theory, Academic Press, New York, 1980 | MR | Zbl