Relatively free associative Lie nilpotent algebras of rank~$3$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1937-1946

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Phi$ be an arbitrary unital associative and commutative ring. The relatively free Lie nilpotent algebras with three generators over $\Phi$ are studied. The product theorem is proved: $T^{(n)}T^{(m)} \subseteq T^{(n + m-1)}$, where $T^{(n)}$ is a verbal ideal generated by the commutators of degree $n$. The identities of three variables that are satisfied in a free associative Lie nilpotent algebra of degree $n\geq 3$ are described. It is proved that the additive structure of the considered algebra is a free module over the ring $\Phi$.
Keywords: associative Lie nilpotent algebra, identity in three variables, torsion of a free ring.
@article{SEMR_2019_16_a33,
     author = {S. V. Pchelintsev},
     title = {Relatively free associative {Lie} nilpotent algebras of rank~$3$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1937--1946},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a33/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
TI  - Relatively free associative Lie nilpotent algebras of rank~$3$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1937
EP  - 1946
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a33/
LA  - ru
ID  - SEMR_2019_16_a33
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%T Relatively free associative Lie nilpotent algebras of rank~$3$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1937-1946
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a33/
%G ru
%F SEMR_2019_16_a33
S. V. Pchelintsev. Relatively free associative Lie nilpotent algebras of rank~$3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1937-1946. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a33/