Lattice properties of Rogers semilattices of compuatble and generalized computable familie
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1927-1936

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the distributivity property and the property of being a lattice of Rogers semilattices of generalized computable families. We prove that the Rogers semilattice of any nontrivial $A$-computable family is not a lattice for every non-computable set $A$. It is also proved that if a set $A$ is non-computable then the Rogers semilattice of any infinite $A$-computable family is not weakly distribuive. Furtermore, we find two infinite computable families with nontrivial distributive and properly weakly distributive nontrivial Rogers semilattices.
Keywords: computable enumeration, generalized computable enumeration, $A$-computable enumeration, Rogers semilattice.
@article{SEMR_2019_16_a32,
     author = {M. Kh. Faizrahmanov},
     title = {Lattice properties of {Rogers} semilattices of compuatble and generalized computable familie},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1927--1936},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a32/}
}
TY  - JOUR
AU  - M. Kh. Faizrahmanov
TI  - Lattice properties of Rogers semilattices of compuatble and generalized computable familie
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1927
EP  - 1936
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a32/
LA  - ru
ID  - SEMR_2019_16_a32
ER  - 
%0 Journal Article
%A M. Kh. Faizrahmanov
%T Lattice properties of Rogers semilattices of compuatble and generalized computable familie
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1927-1936
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a32/
%G ru
%F SEMR_2019_16_a32
M. Kh. Faizrahmanov. Lattice properties of Rogers semilattices of compuatble and generalized computable familie. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1927-1936. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a32/