The strict upper bound of ranks of commutator subgroups of finite $p$-groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1885-1900.

Voir la notice de l'article provenant de la source Math-Net.Ru

All groups in the abstract are finite. We define rank $d(G)$ of a $p$-group $G$ as the minimal number of generators of $G$. Let $p$ be any prime number, $k_1, \dots, k_n$ – positive integers, $n \geq 2$. By $D(k_1, \dots, k_n)$ we denote the number of sequences $i_1,\dots,i_k$ in which $k \geq 2$, $i_1,\dots,i_k$ are positive integers from $[1,n]$, $i_1 > i_2$, $i_2 \leq \dots \leq i_k$ and for any $j \in [1,n]$ number $j$ may not occur in such sequences more than $(p^{k_j}-1)$ times. We prove that for any $p$-group $G$ generated by elements $a_1,\dots,a_n$ of orders $p_1^{k_1},\dots,p_n^{k_n}$ $(n \geq 2)$ the inequality $d(G') \leq D(k_1, \dots, k_n, p)$ is true and the equality in this inequality is attainable. Also, we prove that for any $p$-group $G$ generated by elements $a_1,\dots,a_n$ of orders $p_1^{k_1},\dots,p_n^{k_n}$ $(n \geq 2)$, with elementary abelian commutator subgroup $G'$ the class of nilpotency of $G'$ does not exceed $p_1^{k_1}+\dots+p_n^{k_n}-n$ and this upper bound is also attainable.
Keywords: finite $p$-group generated by elements of orders $p_1^{k_1},\dots,p_n^{k_n}$, number of generators of commutator subgroup of a finite $p$-group, the class of nilpotency of of a finite $p$-group with elementary abelian commutator subgroup, definition of a group by means of generators and defining relations.
@article{SEMR_2019_16_a30,
     author = {B. M. Veretennikov},
     title = {The strict upper bound of ranks of commutator subgroups of finite $p$-groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1885--1900},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a30/}
}
TY  - JOUR
AU  - B. M. Veretennikov
TI  - The strict upper bound of ranks of commutator subgroups of finite $p$-groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1885
EP  - 1900
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a30/
LA  - ru
ID  - SEMR_2019_16_a30
ER  - 
%0 Journal Article
%A B. M. Veretennikov
%T The strict upper bound of ranks of commutator subgroups of finite $p$-groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1885-1900
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a30/
%G ru
%F SEMR_2019_16_a30
B. M. Veretennikov. The strict upper bound of ranks of commutator subgroups of finite $p$-groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1885-1900. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a30/

[1] B.M. Veretennikov, “On the commutator subgroups of finite 2-groups generated by involutions”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 4, 2017, 77–84 (in Russian) | DOI | MR

[2] B.M. Veretennikov, “On the rank of the commutator subgroup of the finite p-group generated by elements of order $p>2$”, Siberian Electronic Mathematical Reports, 15 (2018), 1332–1343 (in Russian) | MR | Zbl

[3] N. Blackburn, “On prime-power groups with two generators”, Mathematical Proceedings of the Cambridge Philosophical Society, 54:3 (1958), 327–337 | DOI | MR | Zbl

[4] M.I. Kargapolov, J.I. Merzljakov, Fundamentals of the Theory of Groups, Springer-Verlag, New York, 1979 | MR | Zbl

[5] B.M. Veretennikov, “On commutator subgroups of finite p-groups generated by elements of order $p$”, XII School-Conference on Group Theory, Honor of the 65th Birthday of Professor Alexander A. Makhnev (in Russian)