Conflict and conflict-free theories
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1833-1842.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define and study $\lambda$-conflict theories and, in particular, conflict-free theories. A series of conflict-free theories is found. It is proved that there are $\lambda$-conflict theories for arbitrary $\lambda$. It is shown that $\lambda$-conflictness is not preserved under expansions of theories.
Keywords: conflict theory, conflict-free theory, generic structure, cardinality contradiction.
@article{SEMR_2019_16_a28,
     author = {A. Yu. Mikhaylenko and S. V. Sudoplatov},
     title = {Conflict and conflict-free theories},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1833--1842},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a28/}
}
TY  - JOUR
AU  - A. Yu. Mikhaylenko
AU  - S. V. Sudoplatov
TI  - Conflict and conflict-free theories
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1833
EP  - 1842
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a28/
LA  - en
ID  - SEMR_2019_16_a28
ER  - 
%0 Journal Article
%A A. Yu. Mikhaylenko
%A S. V. Sudoplatov
%T Conflict and conflict-free theories
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1833-1842
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a28/
%G en
%F SEMR_2019_16_a28
A. Yu. Mikhaylenko; S. V. Sudoplatov. Conflict and conflict-free theories. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1833-1842. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a28/

[1] S. V. Sudoplatov, Classification of Countable Models of Complete Theories, NSTU, Novosibirsk, 2018

[2] S. V. Sudoplatov, “Syntactic approach to constructions of generic models”, Algebra and Logic, 46:2 (2007), 134–146 | DOI | MR | Zbl

[3] S. V. Sudoplatov, The Lachlan problem, NSTU, Novosibirsk, 2009

[4] S. V. Sudoplatov, “Generative and pre-generative classes”, Proceedings of the $10^{\rm th}$ Panhellenic Logic Symposium (June 11–15, 2015, Samos, Greece), University of Aegean, University of Crete, University of Athens, 30–34

[5] S. V. Sudoplatov, “Generative classes generated by sets of diagrams”, Algebra and Model Theory 10, Collection of papers, eds. A.G. Pinus, K.N. Ponomaryov, S.V. Sudoplatov, E.I. Timoshenko, NSTU, Novosibirsk, 2015, 163–174

[6] S. V. Sudoplatov, Y. Kiouvrekis, P. Stefaneas, “Generic constructions and generic limits”, Algebraic Modeling of Topological and Computational Structures and Applications, Springer Proc. in Math. Statist., 219, eds. S. Lambropoulou et al., Springer Int. Publ., Berlin, 2017, 375–398 | DOI | MR | Zbl

[7] S. V. Sudoplatov, “Generations of generative classes”, The Bulletin of Irkutsk State University. Series “Mathematics”, 22 (2017), 106–117 | DOI | MR | Zbl

[8] Y. Kiouvrekis, P. Stefaneas, S. V. Sudoplatov, “Definable sets in generic structures and their cardinalities”, Siberian Advances in Mathermatics, 28:1 (2018), 39–52 | DOI | MR

[9] K. Zh. Kudaibergenov, “On Fraïssé Theorem for an uncountable class of finitely generated structures”, Siberian Advances in Mathematics, 28:1 (2018), 60–64 | DOI | MR | Zbl

[10] R. E. Woodrow, Theories with a finite number of countable models and a small language, Ph. D. Thesis, Simon Fraser University, 1976, 99 pp. | MR

[11] S. V. Sudoplatov, “Combinations of structures”, The Bulletin of Irkutsk State University. Series “Mathematics”,, 24 (2018), 65–84 | DOI | MR | Zbl

[12] S. V. Sudoplatov, “Closures and generating sets related to combinations of structures”, The Bulletin of Irkutsk State University. Series “Mathematics”, 16 (2016), 131–144 | MR | Zbl