On finite groups isospectral to the simple group $S_4(3)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1561-1566

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of a finite group is the set of its element orders. A finite group $G$ is called critical with respect to a subset $\omega$ of natural numbers if $\omega$ coincides with the spectrum of $G$ and does not coincide with the spectra of proper sections of $G$. We study the structure of finite groups with the same spectrum as the simple symplectic group $PSp(4, 3)$. In particular, we describe groups critical with respect to the spectrum of $PSp(4, 3)$.
Keywords: finite group, spectrum, critical group, nonabelian simple group.
@article{SEMR_2019_16_a26,
     author = {Yuri V. Lytkin},
     title = {On finite groups isospectral to the simple group $S_4(3)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1561--1566},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a26/}
}
TY  - JOUR
AU  - Yuri V. Lytkin
TI  - On finite groups isospectral to the simple group $S_4(3)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1561
EP  - 1566
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a26/
LA  - en
ID  - SEMR_2019_16_a26
ER  - 
%0 Journal Article
%A Yuri V. Lytkin
%T On finite groups isospectral to the simple group $S_4(3)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1561-1566
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a26/
%G en
%F SEMR_2019_16_a26
Yuri V. Lytkin. On finite groups isospectral to the simple group $S_4(3)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1561-1566. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a26/