On finite groups isospectral to the simple group $S_4(3)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1561-1566.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of a finite group is the set of its element orders. A finite group $G$ is called critical with respect to a subset $\omega$ of natural numbers if $\omega$ coincides with the spectrum of $G$ and does not coincide with the spectra of proper sections of $G$. We study the structure of finite groups with the same spectrum as the simple symplectic group $PSp(4, 3)$. In particular, we describe groups critical with respect to the spectrum of $PSp(4, 3)$.
Keywords: finite group, spectrum, critical group, nonabelian simple group.
@article{SEMR_2019_16_a26,
     author = {Yuri V. Lytkin},
     title = {On finite groups isospectral to the simple group $S_4(3)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1561--1566},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a26/}
}
TY  - JOUR
AU  - Yuri V. Lytkin
TI  - On finite groups isospectral to the simple group $S_4(3)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1561
EP  - 1566
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a26/
LA  - en
ID  - SEMR_2019_16_a26
ER  - 
%0 Journal Article
%A Yuri V. Lytkin
%T On finite groups isospectral to the simple group $S_4(3)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1561-1566
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a26/
%G en
%F SEMR_2019_16_a26
Yuri V. Lytkin. On finite groups isospectral to the simple group $S_4(3)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1561-1566. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a26/

[1] V.D. Mazurov, W.J. Shi, “A criterion of unrecognizability by spectrum for finite groups”, Algebra Logic, 51:2 (2012), 160–162 | MR | Zbl

[2] I.B. Gorshkov, “Recognizability of alternating groups by spectrum”, Algebra Logic, 52:1 (2013), 41–45 | MR | Zbl

[3] V.D. Mazurov, W.J. Shi, “A note to the characterization of sporadic simple groups”, Algebra Colloq., 5:3 (1998), 285–288 | MR | Zbl

[4] A.V. Vasil'ev, A.M. Staroletov, “Almost recognizability by spectrum of simple exceptional groups of Lie type”, Algebra Logic, 53:6 (2014), 433–449 | MR

[5] M.A. Grechkoseeva, A.V. Vasil'ev, “On the structure of finite groups isospectral to finite simple groups”, J. Group Theory, 18:5 (2015), 741–759 | MR | Zbl

[6] Y.V. Lytkin, “On finite groups isospectral to the simple groups $S_4(q)$”, Siberian electronic mathematical reports, 15 (2018), 570–584 | MR

[7] Y.V. Lytkin, “On groups critical with respect to a set of natural numbers”, Siberian electronic mathematical reports, 10 (2013), 666–675 | MR | Zbl

[8] Y.V. Lytkin, “Groups critical with respect to the spectra of alternating and sporadic groups”, Sib. Math. J., 56:1 (2015), 101–106 | MR | Zbl

[9] Y.V. Lytkin, “On finite groups isospectral to $U_3(3)$”, Sib. Math. J., 58:4 (2017), 633–643 | MR | Zbl

[10] M.R. Aleeva, “On finite simple groups with the set of element orders as in a Frobenius group or a double Frobenius group”, Math. Notes, 73:3 (2003), 299–313 | MR | Zbl

[11] A.V. Zavarnitsine, “A solvable group isospectral to $S_4(3)$”, Sib. Math. J., 51:1 (2010), 20–24 | MR | Zbl

[12] V.D. Mazurov, “2-Frobenius groups isospectral to the simple group $U_3(3)$”, Sib. Math. J., 56:6 (2015), 1108–1113 | MR | Zbl

[13] J.S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | MR | Zbl

[14] V.D. Mazurov, M.C. Xu, H.P. Cao, “Recognition of the finite simple groups $L_3(2^m)$ and $U_3(2^m)$ from the orders of their elements”, Algebra Logic, 39:5 (2000), 324–334 | MR | Zbl

[15] V.D. Mazurov, “Recognition of finite simple groups $S_4(q)$ by their element orders”, Algebra Logic, 41:2 (2002), 93–110 | MR | Zbl

[16] V.D. Mazurov, “Characterizations of finite groups by sets of orders of their elements”, Algebra and Logic, 36:1 (1997), 23–32 | MR | Zbl

[17] B. Huppert, Endliche Gruppen, Springer Verlag, 1979 | MR | Zbl

[18] B. Srinivasan, “The characters of the finite symplectic group $Sp(4,q)$”, Trans. Amer. Math. Soc., 131 (1968), 488–525 | MR | Zbl

[19] A.V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Siberian electronic mathematical reports, 6 (2009), 1–12 | MR | Zbl

[20] GAP: Groups, algorithms, and programming, http://www/gap-system.org

[21] ATLAS of Finite Group Representations, http://brauer.maths.qmul.ac.uk/Atlas/v3/