Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a26, author = {Yuri V. Lytkin}, title = {On finite groups isospectral to the simple group $S_4(3)$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1561--1566}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a26/} }
Yuri V. Lytkin. On finite groups isospectral to the simple group $S_4(3)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1561-1566. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a26/
[1] V.D. Mazurov, W.J. Shi, “A criterion of unrecognizability by spectrum for finite groups”, Algebra Logic, 51:2 (2012), 160–162 | MR | Zbl
[2] I.B. Gorshkov, “Recognizability of alternating groups by spectrum”, Algebra Logic, 52:1 (2013), 41–45 | MR | Zbl
[3] V.D. Mazurov, W.J. Shi, “A note to the characterization of sporadic simple groups”, Algebra Colloq., 5:3 (1998), 285–288 | MR | Zbl
[4] A.V. Vasil'ev, A.M. Staroletov, “Almost recognizability by spectrum of simple exceptional groups of Lie type”, Algebra Logic, 53:6 (2014), 433–449 | MR
[5] M.A. Grechkoseeva, A.V. Vasil'ev, “On the structure of finite groups isospectral to finite simple groups”, J. Group Theory, 18:5 (2015), 741–759 | MR | Zbl
[6] Y.V. Lytkin, “On finite groups isospectral to the simple groups $S_4(q)$”, Siberian electronic mathematical reports, 15 (2018), 570–584 | MR
[7] Y.V. Lytkin, “On groups critical with respect to a set of natural numbers”, Siberian electronic mathematical reports, 10 (2013), 666–675 | MR | Zbl
[8] Y.V. Lytkin, “Groups critical with respect to the spectra of alternating and sporadic groups”, Sib. Math. J., 56:1 (2015), 101–106 | MR | Zbl
[9] Y.V. Lytkin, “On finite groups isospectral to $U_3(3)$”, Sib. Math. J., 58:4 (2017), 633–643 | MR | Zbl
[10] M.R. Aleeva, “On finite simple groups with the set of element orders as in a Frobenius group or a double Frobenius group”, Math. Notes, 73:3 (2003), 299–313 | MR | Zbl
[11] A.V. Zavarnitsine, “A solvable group isospectral to $S_4(3)$”, Sib. Math. J., 51:1 (2010), 20–24 | MR | Zbl
[12] V.D. Mazurov, “2-Frobenius groups isospectral to the simple group $U_3(3)$”, Sib. Math. J., 56:6 (2015), 1108–1113 | MR | Zbl
[13] J.S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | MR | Zbl
[14] V.D. Mazurov, M.C. Xu, H.P. Cao, “Recognition of the finite simple groups $L_3(2^m)$ and $U_3(2^m)$ from the orders of their elements”, Algebra Logic, 39:5 (2000), 324–334 | MR | Zbl
[15] V.D. Mazurov, “Recognition of finite simple groups $S_4(q)$ by their element orders”, Algebra Logic, 41:2 (2002), 93–110 | MR | Zbl
[16] V.D. Mazurov, “Characterizations of finite groups by sets of orders of their elements”, Algebra and Logic, 36:1 (1997), 23–32 | MR | Zbl
[17] B. Huppert, Endliche Gruppen, Springer Verlag, 1979 | MR | Zbl
[18] B. Srinivasan, “The characters of the finite symplectic group $Sp(4,q)$”, Trans. Amer. Math. Soc., 131 (1968), 488–525 | MR | Zbl
[19] A.V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Siberian electronic mathematical reports, 6 (2009), 1–12 | MR | Zbl
[20] GAP: Groups, algorithms, and programming, http://www/gap-system.org
[21] ATLAS of Finite Group Representations, http://brauer.maths.qmul.ac.uk/Atlas/v3/