Limited-combinatorial sets
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1553-1560

Voir la notice de l'article provenant de la source Math-Net.Ru

This article discusses the issue of classification of their own subsets of $\mathbb{N}=\{0,1,2,3,\ldots\}$ by means of partial Boolean functions. For an arbitrary partial Boolean function $\beta$ defines the notion of $\beta$-limited combinatorial set, which is a generalization of the concept of $\beta$-combinatorial set [1]. Fully describe the classes of these sets, the relationship between these classes by inclusion.
Keywords: Boolean functions, combinatorial sets, combinatorial-selector sets, limited-combinatorial sets, a sequence of maximal restriction.
@article{SEMR_2019_16_a25,
     author = {D. I. Ivanov and M. L. Platonov},
     title = {Limited-combinatorial sets},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1553--1560},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a25/}
}
TY  - JOUR
AU  - D. I. Ivanov
AU  - M. L. Platonov
TI  - Limited-combinatorial sets
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1553
EP  - 1560
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a25/
LA  - ru
ID  - SEMR_2019_16_a25
ER  - 
%0 Journal Article
%A D. I. Ivanov
%A M. L. Platonov
%T Limited-combinatorial sets
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1553-1560
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a25/
%G ru
%F SEMR_2019_16_a25
D. I. Ivanov; M. L. Platonov. Limited-combinatorial sets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1553-1560. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a25/