Limited-combinatorial sets
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1553-1560.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article discusses the issue of classification of their own subsets of $\mathbb{N}=\{0,1,2,3,\ldots\}$ by means of partial Boolean functions. For an arbitrary partial Boolean function $\beta$ defines the notion of $\beta$-limited combinatorial set, which is a generalization of the concept of $\beta$-combinatorial set [1]. Fully describe the classes of these sets, the relationship between these classes by inclusion.
Keywords: Boolean functions, combinatorial sets, combinatorial-selector sets, limited-combinatorial sets, a sequence of maximal restriction.
@article{SEMR_2019_16_a25,
     author = {D. I. Ivanov and M. L. Platonov},
     title = {Limited-combinatorial sets},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1553--1560},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a25/}
}
TY  - JOUR
AU  - D. I. Ivanov
AU  - M. L. Platonov
TI  - Limited-combinatorial sets
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1553
EP  - 1560
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a25/
LA  - ru
ID  - SEMR_2019_16_a25
ER  - 
%0 Journal Article
%A D. I. Ivanov
%A M. L. Platonov
%T Limited-combinatorial sets
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1553-1560
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a25/
%G ru
%F SEMR_2019_16_a25
D. I. Ivanov; M. L. Platonov. Limited-combinatorial sets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1553-1560. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a25/

[1] Degtev A. N., “Recursive-combinatorial properties of subsets of the natural numbers”, Algebra and Logic, 29:3 (1990), 204–210 | MR | Zbl

[2] Degtev A. N., “Weak combinatorial selective properties of subsets of the natural numbers”, Algebra and Logic, 29:4 (1990), 280–286 | MR | Zbl

[3] Degtev A. N., “Implicatively selector sets”, Algebra and Logic, 35:2 (1996), 80–85 | MR | Zbl

[4] Degtev A. N., “Almost combinatorial selector sets”, Mathematical notes, 68:6 (2000), 721–723 | MR | Zbl

[5] Degtev A. N., Ivanov D. I., “Weakly combinatorial selector sets”, Algebra and Logic, 37:6 (1998), 357–362 | MR | Zbl

[6] Degtev A. N., Ivanov D. I., “Weakly implicatively selective sets of dimension $3$”, Discrete Mathematics and Applications, 9:4 (1999), 395–402 | MR | Zbl

[7] Degtev A. N., Ivanov D. I., “About the classes of linear and self-dual weakly implicative selector sets”, Tyumen State University Herald, 4 (2004), 238–241 (in Russian) | MR

[8] Jockusch C. G. Jr., “Semirecursive sets and positive reducibility”, Transactions of the American Mathematics Society, 131:2 (1968), 420–436 | MR | Zbl

[9] Ivanov D. I., “Weakly implicative selector sets”, Russian Mathematics, 50:9 (2006), 27–31 | MR | Zbl

[10] Ivanov D. I., “Weakly combinatorial-selector sets”, Russian Mathematics, 50:11 (2006), 20–23 | MR | Zbl

[11] Yablonskij S. V., Gavrilov G. P., Kudryavtsev V. G., Functions of the Algebra of Logic and Post Classes, Nauka, M., 1966 (in Russian) | MR | Zbl