Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a23, author = {V. N. Zhelyabin}, title = {Addition to {Block's} theorem and to {Popov's} theorem on differentially simple algebras}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1375--1384}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a23/} }
TY - JOUR AU - V. N. Zhelyabin TI - Addition to Block's theorem and to Popov's theorem on differentially simple algebras JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1375 EP - 1384 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a23/ LA - ru ID - SEMR_2019_16_a23 ER -
V. N. Zhelyabin. Addition to Block's theorem and to Popov's theorem on differentially simple algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1375-1384. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a23/
[1] R. E. Block, “Determination of the differentiably simple rings with a minimal ideal”, Ann. of Math., 90:3 (1969), 433–459 | MR | Zbl
[2] A. A. Popov, “Differentiably simple alternative algebras”, Algebra and Logic, 49:5 (2010), 456–469 | MR | Zbl
[3] V. N. Zhelyabin, A. A. Popov, I. P. Shestakov, “The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras”, Algebra and Logic, 52:4 (2013), 277–289 | MR | Zbl
[4] V. N. Zhelyabin, M. E. Goncharov, “An example of a differentially simple Lie algebra that is not a free module over its centroid”, Sib. Elektron. Mat. Izv., 11 (2014), 915–920 | MR | Zbl
[5] C. Faith, Algebra: Rings, Modules and Categories I, Springer-Verlag, Bedrlin–Heidelberg–New York, 1973 | MR | Zbl
[6] R. G. Swan, “Vector bundles and projective modules”, Trans. Amer. Math. Soc., 105:2 (1962), 264–277 | MR | Zbl
[7] Michael Gr. Voskoglou, “A note on Derivations of Commutative Rings”, MATH'10 Proceedings of the 15th WSEAS international conference on Applied mathematics, WSEAS, Stevens Point, 2010, 73–78 | Zbl
[8] Michael Gr. Voskoglou, “A note on the simplicity of skew polynomial rings of derivation type”, Acta Math. Univ. Ostrav., 12:1 (2004), 61–64 | MR | Zbl
[9] V.N. Zhelyabin, I.P. Shestakov, “Simple special Jordan superalgebras with an associative even part”, Siberian Math. J., 45:5 (2004), 860–882 | MR | Zbl
[10] I.P. Shestakov, “Simple (-1,1)-superalgebras”, Algebra and Logic, 37:6 (1998), 411–422 | MR | Zbl
[11] N. Jackobson, Structure of rings, Izdat. Inostr. Lit., M., 1961 | MR
[12] A. A. Sagle, “Simple Malcev algebras over fields of characteristic zero”, Pacific J. Math., 12 (1962), 1057–1078 | MR | Zbl
[13] E.N. Kuz'min, “Mal'cev algebras and their representations”, Algebra i Logika, 37:4 (1968), 48–69 | Zbl
[14] E.N. Kuz'min, “The structure and representations of finite-dimensional Mal'tsev algebras”, Trudy Inst. Mat., 16 (1989), 75–101 | MR | Zbl
[15] K.A. Zhevlakov, A.M. Slinko, I.P. Shestakov, A.I. Shirshov, Rings that are nearly associative, Nauka, M., 1978 | MR | Zbl