Addition to Block's theorem and to Popov's theorem on differentially simple algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1375-1384.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper gives examples of differentially simple algebras over the field of complex numbers, which are not represented in the form specified in Block's theorem. More precisely, examples of these algebras are finitely generated projective, but non-free, modules over their centroids. Recall, Popov's theorem states, that a differentially simple alternative non-associative algebra over a field of characteristic zero is a finitely generated projective module over the center.
Keywords: differentially simple algebra, projective module, associative algebra, alternative algebra, Jordan algebra, Lie algebra, Malcev algebra algebra of polynomials.
@article{SEMR_2019_16_a23,
     author = {V. N. Zhelyabin},
     title = {Addition to {Block's} theorem and to {Popov's} theorem on differentially simple algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1375--1384},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a23/}
}
TY  - JOUR
AU  - V. N. Zhelyabin
TI  - Addition to Block's theorem and to Popov's theorem on differentially simple algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1375
EP  - 1384
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a23/
LA  - ru
ID  - SEMR_2019_16_a23
ER  - 
%0 Journal Article
%A V. N. Zhelyabin
%T Addition to Block's theorem and to Popov's theorem on differentially simple algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1375-1384
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a23/
%G ru
%F SEMR_2019_16_a23
V. N. Zhelyabin. Addition to Block's theorem and to Popov's theorem on differentially simple algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1375-1384. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a23/

[1] R. E. Block, “Determination of the differentiably simple rings with a minimal ideal”, Ann. of Math., 90:3 (1969), 433–459 | MR | Zbl

[2] A. A. Popov, “Differentiably simple alternative algebras”, Algebra and Logic, 49:5 (2010), 456–469 | MR | Zbl

[3] V. N. Zhelyabin, A. A. Popov, I. P. Shestakov, “The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras”, Algebra and Logic, 52:4 (2013), 277–289 | MR | Zbl

[4] V. N. Zhelyabin, M. E. Goncharov, “An example of a differentially simple Lie algebra that is not a free module over its centroid”, Sib. Elektron. Mat. Izv., 11 (2014), 915–920 | MR | Zbl

[5] C. Faith, Algebra: Rings, Modules and Categories I, Springer-Verlag, Bedrlin–Heidelberg–New York, 1973 | MR | Zbl

[6] R. G. Swan, “Vector bundles and projective modules”, Trans. Amer. Math. Soc., 105:2 (1962), 264–277 | MR | Zbl

[7] Michael Gr. Voskoglou, “A note on Derivations of Commutative Rings”, MATH'10 Proceedings of the 15th WSEAS international conference on Applied mathematics, WSEAS, Stevens Point, 2010, 73–78 | Zbl

[8] Michael Gr. Voskoglou, “A note on the simplicity of skew polynomial rings of derivation type”, Acta Math. Univ. Ostrav., 12:1 (2004), 61–64 | MR | Zbl

[9] V.N. Zhelyabin, I.P. Shestakov, “Simple special Jordan superalgebras with an associative even part”, Siberian Math. J., 45:5 (2004), 860–882 | MR | Zbl

[10] I.P. Shestakov, “Simple (-1,1)-superalgebras”, Algebra and Logic, 37:6 (1998), 411–422 | MR | Zbl

[11] N. Jackobson, Structure of rings, Izdat. Inostr. Lit., M., 1961 | MR

[12] A. A. Sagle, “Simple Malcev algebras over fields of characteristic zero”, Pacific J. Math., 12 (1962), 1057–1078 | MR | Zbl

[13] E.N. Kuz'min, “Mal'cev algebras and their representations”, Algebra i Logika, 37:4 (1968), 48–69 | Zbl

[14] E.N. Kuz'min, “The structure and representations of finite-dimensional Mal'tsev algebras”, Trudy Inst. Mat., 16 (1989), 75–101 | MR | Zbl

[15] K.A. Zhevlakov, A.M. Slinko, I.P. Shestakov, A.I. Shirshov, Rings that are nearly associative, Nauka, M., 1978 | MR | Zbl