Addition to Block's theorem and to Popov's theorem on differentially simple algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1375-1384

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper gives examples of differentially simple algebras over the field of complex numbers, which are not represented in the form specified in Block's theorem. More precisely, examples of these algebras are finitely generated projective, but non-free, modules over their centroids. Recall, Popov's theorem states, that a differentially simple alternative non-associative algebra over a field of characteristic zero is a finitely generated projective module over the center.
Keywords: differentially simple algebra, projective module, associative algebra, alternative algebra, Jordan algebra, Lie algebra, Malcev algebra algebra of polynomials.
@article{SEMR_2019_16_a23,
     author = {V. N. Zhelyabin},
     title = {Addition to {Block's} theorem and to {Popov's} theorem on differentially simple algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1375--1384},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a23/}
}
TY  - JOUR
AU  - V. N. Zhelyabin
TI  - Addition to Block's theorem and to Popov's theorem on differentially simple algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1375
EP  - 1384
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a23/
LA  - ru
ID  - SEMR_2019_16_a23
ER  - 
%0 Journal Article
%A V. N. Zhelyabin
%T Addition to Block's theorem and to Popov's theorem on differentially simple algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1375-1384
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a23/
%G ru
%F SEMR_2019_16_a23
V. N. Zhelyabin. Addition to Block's theorem and to Popov's theorem on differentially simple algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1375-1384. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a23/