Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a2, author = {D. V. Skokov and B. M. Vernikov}, title = {On modular and cancellable elements of the lattice of semigroup varieties}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {175--186}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a2/} }
TY - JOUR AU - D. V. Skokov AU - B. M. Vernikov TI - On modular and cancellable elements of the lattice of semigroup varieties JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 175 EP - 186 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a2/ LA - en ID - SEMR_2019_16_a2 ER -
D. V. Skokov; B. M. Vernikov. On modular and cancellable elements of the lattice of semigroup varieties. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 175-186. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a2/
[1] S. V. Gusev, D. V. Skokov, B. M. Vernikov, “Cancellable elements of the lattice of semigroup varieties”, Algebra and Discr. Math., 26 (2018), 34–46 | MR
[2] J. Ježek, R. N. McKenzie, “Definability in the lattice of equational theories of semigroups”, Semigroup Forum, 46 (1993), 199–245 | DOI | MR | Zbl
[3] Gy. Pollák, “On the consequences of permutation identities”, Acta Sci. Math. (Szeged), 34 (1973), 323–333 | MR | Zbl
[4] Soviet Math. Iz. VUZ, 25:4 (1981), 53–63 | MR | Zbl | Zbl
[5] B.Šešelja, A. Tepavčević, Weak Congruences in Universal Algebra, Institute of Mathematics, Novi Sad; Symbol, Novi Sad, 2001 | MR
[6] Russ. Math. Iz. VUZ, 55:7 (2011), 56–67 | DOI | MR | Zbl
[7] V. Yu. Shaprynskiǐ, “Modular and lower-modular elements of lattices of semigroup varieties”, Semigroup Forum, 85:1 (2012), 97–110 | DOI | MR | Zbl
[8] Russian Math. Iz. VUZ, 53:3 (2009), 1–28 | DOI | MR | MR | Zbl
[9] B. M. Vernikov, “On modular elements of the lattice of semigroup varieties”, Comment. Math. Univ. Carol., 48 (2007), 595–606 | MR | Zbl
[10] B. M. Vernikov, “Special elements in lattices of semigroup varieties”, Acta Sci. Math. (Szeged), 81:1–2 (2015), 79–109 | DOI | MR | Zbl
[11] B. M. Vernikov, M. V. Volkov, “Modular elements of the lattice of semigroup varieties. II”, Contrib. General Algebra, 17 (2006), 173–190 | MR | Zbl
[12] M. V. Volkov, “Modular elements of the lattice of semigroup varieties”, Contrib. General Algebra, 16 (2005), 275–288 | MR | Zbl