On modular and cancellable elements of the lattice of semigroup varieties
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 175-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue a study of modular and cancellable elements in the lattice SEM of all semigroup varieties. In 2007, the second author completely determined all commutative semigroup varieties that are modular elements in SEM. In 2018 the authors jointly with S.V.Gusev proved that, within the class of commutative varieties, the properties to be modular and cancellable elements in SEM are equivalent. The objective of this article is to verify that, within some slightly wider class of semigroup varieties, this equivalence is not the case. To achieve this goal, we completely classify semigroup varieties satisfying a permutational identity of length 3 that are modular elements in SEM. Further, we specify a variety with these properties that is not a cancellable element in SEM.
Keywords: semigroup, variety, lattice of varieties, permutational identity, modular element of a lattice, cancellable element of a lattice.
@article{SEMR_2019_16_a2,
     author = {D. V. Skokov and B. M. Vernikov},
     title = {On modular and cancellable elements of the lattice of semigroup varieties},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {175--186},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a2/}
}
TY  - JOUR
AU  - D. V. Skokov
AU  - B. M. Vernikov
TI  - On modular and cancellable elements of the lattice of semigroup varieties
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 175
EP  - 186
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a2/
LA  - en
ID  - SEMR_2019_16_a2
ER  - 
%0 Journal Article
%A D. V. Skokov
%A B. M. Vernikov
%T On modular and cancellable elements of the lattice of semigroup varieties
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 175-186
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a2/
%G en
%F SEMR_2019_16_a2
D. V. Skokov; B. M. Vernikov. On modular and cancellable elements of the lattice of semigroup varieties. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 175-186. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a2/

[1] S. V. Gusev, D. V. Skokov, B. M. Vernikov, “Cancellable elements of the lattice of semigroup varieties”, Algebra and Discr. Math., 26 (2018), 34–46 | MR

[2] J. Ježek, R. N. McKenzie, “Definability in the lattice of equational theories of semigroups”, Semigroup Forum, 46 (1993), 199–245 | DOI | MR | Zbl

[3] Gy. Pollák, “On the consequences of permutation identities”, Acta Sci. Math. (Szeged), 34 (1973), 323–333 | MR | Zbl

[4] Soviet Math. Iz. VUZ, 25:4 (1981), 53–63 | MR | Zbl | Zbl

[5] B.Šešelja, A. Tepavčević, Weak Congruences in Universal Algebra, Institute of Mathematics, Novi Sad; Symbol, Novi Sad, 2001 | MR

[6] Russ. Math. Iz. VUZ, 55:7 (2011), 56–67 | DOI | MR | Zbl

[7] V. Yu. Shaprynskiǐ, “Modular and lower-modular elements of lattices of semigroup varieties”, Semigroup Forum, 85:1 (2012), 97–110 | DOI | MR | Zbl

[8] Russian Math. Iz. VUZ, 53:3 (2009), 1–28 | DOI | MR | MR | Zbl

[9] B. M. Vernikov, “On modular elements of the lattice of semigroup varieties”, Comment. Math. Univ. Carol., 48 (2007), 595–606 | MR | Zbl

[10] B. M. Vernikov, “Special elements in lattices of semigroup varieties”, Acta Sci. Math. (Szeged), 81:1–2 (2015), 79–109 | DOI | MR | Zbl

[11] B. M. Vernikov, M. V. Volkov, “Modular elements of the lattice of semigroup varieties. II”, Contrib. General Algebra, 17 (2006), 173–190 | MR | Zbl

[12] M. V. Volkov, “Modular elements of the lattice of semigroup varieties”, Contrib. General Algebra, 16 (2005), 275–288 | MR | Zbl