Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a19, author = {V. V. Rybakov}, title = {Branching time agents' logic, satisfiability problem by rules in reduced form}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1158--1170}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a19/} }
TY - JOUR AU - V. V. Rybakov TI - Branching time agents' logic, satisfiability problem by rules in reduced form JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1158 EP - 1170 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a19/ LA - en ID - SEMR_2019_16_a19 ER -
V. V. Rybakov. Branching time agents' logic, satisfiability problem by rules in reduced form. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1158-1170. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a19/
[1] F. Baader, M. Bienvenu, C. Lutz, F. Wolter, “Query and Predicate Emptiness in Ontology-Based Data Access”, J. Artif. Intell. Res. (JAIR), 56 (2016), 1–59 | Zbl
[2] S. Babenyshev, V. Rybakov, “Linear Temporal Logic LTL: Basis for Admissible Rules”, Journal of Logic and Computation, 21:2 (2011), 157–177 | Zbl
[3] F. Belardinelli, A. Lomuscio, “Interactions between Knowledge and Time in a First-Order Logic for Multi-Agent Systems: Completeness Results”, Journal of Artificial Intelligence Research, 45 (2012), 1–45 | Zbl
[4] P. Balbiani, D. Vakarelov, “A Modal Logic for Indiscernibility and Complementarity in Information Systems”, Fundam. Inform., 50:3–4 (2002), 243–263 | Zbl
[5] G. Bruns, P. Godefroid, “Model Checking with Multi-valued Logics”, Automata, Languages and Programming, Lecture Notes in Computer Science, 3142, 2004, 281–293 | Zbl
[6] M. Fitting, Many-Valued Modal Logics, Dept. Mathematics and Computer Science Lehman College (CUNY), Bronx, NY 10468, USA, 2004
[7] M. Fitting, Many–Valued Modal Logics II, Dept. Mathematics and Computer Science Lehman College (CUNY), Bronx, NY 10468, USA, 2004
[8] D.M. Gabbay, I.M. Hodkinson, M.A. Reynolds, Temporal Logic, v. 1, Mathematical Foundations and Computational Aspects, Clarendon Press, Oxford, 1994 | Zbl
[9] D.M. Gabbay, I.M. Hodkinson, “An axiomatisation of the temporal logic with Until and Since over the real numbers”, Journal of Logic and Computation, 1 (1990), 229–260 | Zbl
[10] D. Gabbay, I. Hodkinson, “Temporal Logic in Context of Databases”, Logic and Reality, Essays on the legacy of Arthur Prior, ed. J. Copeland, Oxford University Press, 1995
[11] Emerson A., Sistla A., “Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency”, Information and Control, 61:3 (1984), 175–201
[12] A. Lomuscio, J. Michaliszyn, “An Epistemic Halpern–Shoham Logic”, Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI13), AAAI Press, Beijing, China, 2013, 1010–1016
[13] B. Konev, C. Lutz, D. Walther, F. Wolter, “Model–theoretic inseparability and modularity of description logic ontologies”, Artificial Intelligence, 203 (2013), 66–103 | Zbl
[14] D. McLean, V. Rybakov, “Multi–Agent Temporary Logic $TS4^ U_ {K_n}$ Based at Non–linear Time and Imitating Uncertainty via Agents' Interaction”, Artificial Intelligence and Soft Computing, Conference Proceedings, Springer, 2013, 375–384
[15] V.V. Rybakov, “Refined common knowledge logics or logics of common information”, Archive for mathematical Logic, 42:2 (2003), 179–200 | Zbl
[16] V.V. Rybakov, “Logical Consecutions in Discrete Linear Temporal Logic”, J. of Symbolic Logic, 70:4 (2005), 1137–1149 | Zbl
[17] V.V. Rybakov, “Logic of knowledge and discovery via interacting agents. Decision algorithm for true and satisfiable statements”, Information Sciences, 179:11 (2009), 1608–1614 | Zbl
[18] V.V. Rybakov, “Linear Temporal Logic $LTL_{K_n}$ extended by Multi–Agent Logic $K_n$ with Interacting Agents”, Journal of logic and Computation, 19:6 (2009), 989–1017 | Zbl
[19] V. Rybakov, S. Babenyshev, “Multi-agent logic with distances based on linear temporal frames”, Artificial Intelligence and Soft Computing, Conference Proceedings, Springer, 2010, 337–344
[20] V.V. Rybakov, “Chance discovery and unification in linear modal logic”, Knowledge-Based and Intelligent Information and Engineering Systems (KES 2011), LNCS, 6882, 2011, 478–485
[21] V.V. Rybakov, “Linear temporal logic with until and next, logical consecutions”, Ann. Pure Appl. Logic, 155:1 (2008), 32–45 | Zbl
[22] V.V. Rybakov, “Logical Analysis for Chance Discovery in Multi-Agents' Environment”, KES 2012, Conference Proceedings, Springer, 1593–1601
[23] V.V Rybakov, “Non-transitive linear temporal logic and logical knowledge operations V.V. Rybakov”, Journal of Logic and Computation, 26:3 (2016), 945–958 | Zbl
[24] V.V. Rybakov, “Nontransitive temporal multiagent logic, information and knowledge, deciding algorithms”, Siberian Mathematical Journal, 58:5 (2017), 875–886 | Zbl
[25] V.V. Rybakov, “Temporal multi-valued logic with lost worlds in the past”, Siberian Electronic Mathematical Reports, 15 (2018), 436–449 | Zbl
[26] V.V. Rybakov, “Multiagent temporal logics with multivaluations”, Siberian Mathematical Journal, 59:4 (2018), 710–720 | Zbl
[27] D. Vakarelov, “A Modal Characterization of Indiscernibility and Similarity Relations in Pawlak's Information Systems”, 10th international conference, RSFDGrC 2005, v. 1, 2005, 12–22 | Zbl
[28] M. Wooldridge, A. Lomuscio, “Multi–Agent VSK Logic”, Proceedings of the Seventh European Workshop on Logics in Artificial Intelligence (JELIAI-2000), Springer–Verlag, 2000 | Zbl
[29] M. Wooldridge, “An Automata–theoretic approach to multiagent planning”, Proceedings of the First European Workshop on Multiagent Systems (EUMAS 2003), Oxford University, December 2003
[30] M. Wooldridge, M.–P. Huget, M. Fisher, S. Parsons, “Model Checking Multi-Agent Systems: The MABLE Language and Its Applications”, International Journal on Artificial Intelligence Tools, 15:2 (2006), 195–225
[31] F. Wolter, “Automata for Ontologies”, Language and Automata, Theory and Applications, Lecture Notes in Computer Science, 9618, 2016, 57–60 | Zbl