Linearization of automorphisms and triangulation of derivations of free algebras of rank 2
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1133-1146.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a class of $\circ$-varieties of algebras and prove that the tame automorphism group of a free algebra of rank two of any $\circ$-variety of algebras over a field admits an amalgamated free product structure. In particular, the automorphism group of a free right-symmetric algebra of rank two admits an amalgamated free product structure. Using this structure, we prove that any locally finite group of automorphisms of this algebra is conjugate to a subgroup of affine or triangular automorphisms. This implies that any reductive group of automorphisms of a two-generated free right-symmetric algebra is linearizable and any locally nilpotent derivation of this algebra is triangulable over a field of characteristic zero. All of these results are true for free commutative and free non-associative algebras of rank two.
Keywords: free right-symmetric algebra, free product, linearization
Mots-clés : automorphism, triangulation.
@article{SEMR_2019_16_a18,
     author = {A. A. Alimbaev and A. S. Naurazbekova and D. Kh. Kozybaev},
     title = {Linearization of automorphisms and triangulation of derivations of free algebras of rank 2},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1133--1146},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a18/}
}
TY  - JOUR
AU  - A. A. Alimbaev
AU  - A. S. Naurazbekova
AU  - D. Kh. Kozybaev
TI  - Linearization of automorphisms and triangulation of derivations of free algebras of rank 2
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1133
EP  - 1146
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a18/
LA  - ru
ID  - SEMR_2019_16_a18
ER  - 
%0 Journal Article
%A A. A. Alimbaev
%A A. S. Naurazbekova
%A D. Kh. Kozybaev
%T Linearization of automorphisms and triangulation of derivations of free algebras of rank 2
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1133-1146
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a18/
%G ru
%F SEMR_2019_16_a18
A. A. Alimbaev; A. S. Naurazbekova; D. Kh. Kozybaev. Linearization of automorphisms and triangulation of derivations of free algebras of rank 2. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1133-1146. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a18/

[1] H.W.E. Jung, “Über ganze birationale Transformationen der Ebene”, J. Reine Angew. Math., 184 (1942), 161–174 | Zbl

[2] W. van der Kulk, “On polynomial rings in two variables”, Nieuw Arch. Wiskunde, 1:3 (1953), 33–41 | Zbl

[3] I.R. Shafarevich, “On some infinite dimensional algebraic groups”, Rend. Mat. e Appl., 25:5 (1966), 208–212 | Zbl

[4] A.G. Czerniakiewicz, “Automorphisms of a free associative algebra of rank 2. I; II”, Trans. Amer. Math. Soc., 160 (1971), 393–401 ; 171 (1972), 309–315 | Zbl | Zbl

[5] Functional Anal. Appl., 4 (1970), 262–263 | Zbl

[6] L. Makar-Limanov, U. Turusbekova, U. Umirbaev, “Automorphisms and derivations of free Poisson algebras in two variables”, J. Algebra, 322:9 (2009), 3318–3330 | Zbl

[7] P.M. Cohn, “Subalgebras of free associative algebras”, Proc. London Math. Soc., 56 (1964), 618–632 | Zbl

[8] J. Lewin, “On Schreier varities of linear algebras”, Trans. Amer. Math. Soc., 132 (1968), 553–562 | Zbl

[9] A.G. Kurosh, “Nonassociative free algebras and free products of algebras”, Mat. Sb., 20 (1947), 239–262 | Zbl

[10] A.I. Shirshov, “Subalgebras of free commutative and free anticommutative algebras”, Mat. Sb., 34:76 (1954), 81–88 | Zbl

[11] A.I. Shirshov, “Subalgebras of free Lie algebras”, Mat. Sb., 33:75 (1953), 441–452 | Zbl

[12] E. Witt, “Die Unterringe der freien Lieschen Ringe”, Math. Z., 64 (1956), 195–216 | Zbl

[13] A.A. Mikhalev, “Subalgebras of free color Lie superalgebras”, Math. Notes, 37:5 (1985), 653–661 | Zbl

[14] A.S. Shtern, “Free Lie superalgebras”, Sib. Mat. Z., 27:1 (1986), 170–174 | Zbl

[15] T. Kambayashi, “Automorphism group of a polynomial ring and algebraic group actions on affine space”, J. of Algebra, 60 (1979), 439–451 | Zbl

[16] G. Schwarz, “Exotic algebraic group actions”, C. R. Acad. Sci. Paris, 309 (1989), 89–94 | Zbl

[17] L. Moser-Jauslin, M. Masuda, T. Petrie, “The equivariant Serre Problem for abelian groups”, Topology, 35:2 (1996), 329–334 | Zbl

[18] M. Masuda, L. Moser-Jauslin, T. Petrie, “Equivariant algebraic vector bundles over representations of reductive groups: Application”, Proc. Natl. Acad. Sci. USA, 88 (1991), 9065–9066 | Zbl

[19] R. Rentschler, “Operations du groure additif sur le plan”, C. R. Acad. Sci. Paris. Ser. A, 267 (1968), 384–387 | Zbl

[20] H. Bass, “A non-triangular action of $G_a$ on $A^3$”, J. of Pure and Appl. Algebra, 33:1 (1984), 1–5 | Zbl

[21] D. Kozybaev, L. Makar-Limanov, U. Umirbaev, “The Freiheitssatz and the automorphisms of free right-symmetric algebras”, Asian-European Journal of Mathematics, 1 (2008), 243–254 | Zbl

[22] D. Segal, “Free Left-Symmetric algebras and an Analogue of the Poincare-Birkhoff-Witt Theorem”, Jornal of Algebra, 164 (1994), 750–772 | Zbl

[23] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory, Dover Publications, New York, 1976 | Zbl

[24] J.-P. Serre, Trees, Springer-Verlag, Berlin–Heidenberg–New York, 1980 | Zbl

[25] A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Birkhauser, Basel–Boston–Berlin, 2000 | Zbl