On the maximal tori in finite linear and unitary groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1069-1078

Voir la notice de l'article provenant de la source Math-Net.Ru

To follow up on the results of [1], we propose a computationally efficient explicit cyclic decomposition of the maximal tori in the groups $\operatorname{SL}_n(q)$ and $\operatorname{SU}_n(q)$ and their projective images. We also derive some corollaries to simplify practical calculation of the maximal tori. The result is based on a generic cyclic decomposition of a finite abelian group which might also be of interest.
Mots-clés : maximal torus, cyclic decomposition.
@article{SEMR_2019_16_a17,
     author = {Andrei V. Zavarnitsine},
     title = {On the maximal tori in finite linear and unitary groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1069--1078},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a17/}
}
TY  - JOUR
AU  - Andrei V. Zavarnitsine
TI  - On the maximal tori in finite linear and unitary groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1069
EP  - 1078
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a17/
LA  - en
ID  - SEMR_2019_16_a17
ER  - 
%0 Journal Article
%A Andrei V. Zavarnitsine
%T On the maximal tori in finite linear and unitary groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1069-1078
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a17/
%G en
%F SEMR_2019_16_a17
Andrei V. Zavarnitsine. On the maximal tori in finite linear and unitary groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1069-1078. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a17/