Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a146, author = {A. V. Greshnov and R. I. Zhukov}, title = {Completeness theorem in $(q_1,q_2)$-quasimetric spaces}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {2090--2097}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a146/} }
TY - JOUR AU - A. V. Greshnov AU - R. I. Zhukov TI - Completeness theorem in $(q_1,q_2)$-quasimetric spaces JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 2090 EP - 2097 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a146/ LA - ru ID - SEMR_2019_16_a146 ER -
A. V. Greshnov; R. I. Zhukov. Completeness theorem in $(q_1,q_2)$-quasimetric spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2090-2097. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a146/
[1] A. V. Greshnov, “Distance function between sets in $(q_1,q_2)$-quasimetric spaces”, Jour. Siberian Math., 2020 (accepted)
[2] W. A. Wilson, “On quasi-metric spaces”, American J. of Math., 53:3 (1931), 675–684 | DOI | MR
[3] Izv. Math., 82:2 (2018), 245–272 | DOI | MR | MR | Zbl
[4] A V. Arutyunov, A. V. Greshnov, “The theory of $(q_1,q_2)$-quasimetric spaces and coincidence points”, Doklady Mathematics, 94:1 (2016), 434–437 | DOI | MR | Zbl
[5] Doklady Mathematics, 96:2 (2017), 438–441 | DOI | MR | MR | Zbl
[6] D. Burago, Yu. Burago, S. A. Ivanov, Course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society (AMS), Providence, RI, 2001, xiv+415 pp. (English) | DOI | MR | Zbl
[7] A. V. Arutyunov, A. V. Greshnov, L. V. Lokutsievskii, K. V. Storozhuk, “Topological and geometrical properties of spaces with symmetric and nonsymmetric $f$-quasimetrics”, Topology Appl., 221 (2017), 178–194 | DOI | MR | Zbl
[8] M. Cvetković, E. Karapinar, V. Rakocević, “Some fixed point results on quasi-b-metriclike spaces”, J. Inequal. Appl., 2015:374 (2015), 17 pp. | MR