Completeness theorem in $(q_1,q_2)$-quasimetric spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2090-2097.

Voir la notice de l'article provenant de la source Math-Net.Ru

In $(q_1,q_2)$-quasimetric space $(X,d)$ we proved the completeness theorem for $(q_1,q_2)$-quasimetric space $(\mathcal{M}_{\overline{d}},H)$, where $\mathcal{M}_{\overline{d}}$ is the set of all $\overline{d}$-closed sets, $\overline{d}$ is conjugate to $d$ $(q_2,q_1)$-quasimetric, $H$ is the Hausdorff distance.
Mots-clés : $(q_1,q_2)$-quasimetric space, conjugate $(q_2,q_1)$-quasimetric, Hausdorff distance.
Keywords: completeness
@article{SEMR_2019_16_a146,
     author = {A. V. Greshnov and R. I. Zhukov},
     title = {Completeness theorem in $(q_1,q_2)$-quasimetric spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {2090--2097},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a146/}
}
TY  - JOUR
AU  - A. V. Greshnov
AU  - R. I. Zhukov
TI  - Completeness theorem in $(q_1,q_2)$-quasimetric spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 2090
EP  - 2097
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a146/
LA  - ru
ID  - SEMR_2019_16_a146
ER  - 
%0 Journal Article
%A A. V. Greshnov
%A R. I. Zhukov
%T Completeness theorem in $(q_1,q_2)$-quasimetric spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 2090-2097
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a146/
%G ru
%F SEMR_2019_16_a146
A. V. Greshnov; R. I. Zhukov. Completeness theorem in $(q_1,q_2)$-quasimetric spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2090-2097. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a146/

[1] A. V. Greshnov, “Distance function between sets in $(q_1,q_2)$-quasimetric spaces”, Jour. Siberian Math., 2020 (accepted)

[2] W. A. Wilson, “On quasi-metric spaces”, American J. of Math., 53:3 (1931), 675–684 | DOI | MR

[3] Izv. Math., 82:2 (2018), 245–272 | DOI | MR | MR | Zbl

[4] A V. Arutyunov, A. V. Greshnov, “The theory of $(q_1,q_2)$-quasimetric spaces and coincidence points”, Doklady Mathematics, 94:1 (2016), 434–437 | DOI | MR | Zbl

[5] Doklady Mathematics, 96:2 (2017), 438–441 | DOI | MR | MR | Zbl

[6] D. Burago, Yu. Burago, S. A. Ivanov, Course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society (AMS), Providence, RI, 2001, xiv+415 pp. (English) | DOI | MR | Zbl

[7] A. V. Arutyunov, A. V. Greshnov, L. V. Lokutsievskii, K. V. Storozhuk, “Topological and geometrical properties of spaces with symmetric and nonsymmetric $f$-quasimetrics”, Topology Appl., 221 (2017), 178–194 | DOI | MR | Zbl

[8] M. Cvetković, E. Karapinar, V. Rakocević, “Some fixed point results on quasi-b-metriclike spaces”, J. Inequal. Appl., 2015:374 (2015), 17 pp. | MR