Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a145, author = {V. V. Aseev}, title = {Rectangle as a generalized angle}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {2013--2018}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a145/} }
V. V. Aseev. Rectangle as a generalized angle. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2013-2018. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a145/
[1] J. Väisälä, “Quasimöbius maps”, J. Anal. Math., 44 (1985), 218–234 | DOI | Zbl
[2] V. V. Aseev, D. G. Kuzin, “Locally quasi-Möbius mappings on a circle”, J. Math. Sci. (N.Y.), 211:6 (2015), 724–737 | DOI | MR | Zbl
[3] V. V. Aseev, D. G. Kuzin, “Normal families of light mappings of a sphere onto itself”, Sib. Electron. Math. Izv., 10 (2013), 733–742 | MR | Zbl
[4] V. V. Aseev, A. V. Sychev, A. V. Tetenov, “Generalized angles and estimates for their inverse distortion under quasimeromorphic mappings”, Dokl. Math., 69:2 (2004), 188–190 | MR | Zbl
[5] V. V. Aseev, A. V. Sychev, A. V. Tetenov, “Möbius-invariant metrics and generalized angles in Ptolemaic spaces”, Sib. Mat. Zh., 46:2 (2005), 243–263 | DOI | MR | Zbl
[6] V. V. Aseev, D. G. Kuzin, A. V. Tetenov, “Angles between sets and the gluing of quasisymmetric mappings in metric space”, Russian Math. (Izv. VUZov), 49:10 (2005), 1–10 | MR | Zbl
[7] V. V. Aseev, “Generalized angles in Ptolemaic Möbius structures”, Sib. Math. J., 59:2 (2018), 189–201 | DOI | MR | Zbl
[8] V. V. Aseev, “Generalized angles in Ptolemaic Möbius structures II”, Sib. Math. J., 59:5 (2018), 768–777 | DOI | MR | Zbl
[9] V. V. Aseev, “On coordinate vector-functions of quasiregular mappings”, Sib. Electron. Math. Izv., 15 (2018), 768–772 | DOI | MR | Zbl
[10] V. V. Aseev, “Multivalued mappings with the quasimöbius property”, Siberian Math. J., 60:5 (2019), 741–756 | DOI | Zbl