Rectangle as a generalized angle
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2013-2018.

Voir la notice de l'article provenant de la source Math-Net.Ru

In order to extend the notion of quasimöbius mapping to non-injective case the concept of generalized angle $\Psi = (A_1, A_2; B_1, B_2)$ with sides $A_1, A_2$ and vertices $B_1, B_2$ (the sets in a Ptolemaic space) has been employed. The value of a generalizes angle is defined through Ptolimaic characteristic of tetrads and is not easy to by calculated in general case. Here we present the geometric way of calculation in the case where the general angle $\Psi$ is a rectangle.
Keywords: quasimöbius mapping, quasiregular mapping, generalized angle, mapping of bounded angular distortion, set-valued mapping.
Mots-clés : Ptolemaic space
@article{SEMR_2019_16_a145,
     author = {V. V. Aseev},
     title = {Rectangle as a generalized angle},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {2013--2018},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a145/}
}
TY  - JOUR
AU  - V. V. Aseev
TI  - Rectangle as a generalized angle
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 2013
EP  - 2018
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a145/
LA  - en
ID  - SEMR_2019_16_a145
ER  - 
%0 Journal Article
%A V. V. Aseev
%T Rectangle as a generalized angle
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 2013-2018
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a145/
%G en
%F SEMR_2019_16_a145
V. V. Aseev. Rectangle as a generalized angle. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2013-2018. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a145/

[1] J. Väisälä, “Quasimöbius maps”, J. Anal. Math., 44 (1985), 218–234 | DOI | Zbl

[2] V. V. Aseev, D. G. Kuzin, “Locally quasi-Möbius mappings on a circle”, J. Math. Sci. (N.Y.), 211:6 (2015), 724–737 | DOI | MR | Zbl

[3] V. V. Aseev, D. G. Kuzin, “Normal families of light mappings of a sphere onto itself”, Sib. Electron. Math. Izv., 10 (2013), 733–742 | MR | Zbl

[4] V. V. Aseev, A. V. Sychev, A. V. Tetenov, “Generalized angles and estimates for their inverse distortion under quasimeromorphic mappings”, Dokl. Math., 69:2 (2004), 188–190 | MR | Zbl

[5] V. V. Aseev, A. V. Sychev, A. V. Tetenov, “Möbius-invariant metrics and generalized angles in Ptolemaic spaces”, Sib. Mat. Zh., 46:2 (2005), 243–263 | DOI | MR | Zbl

[6] V. V. Aseev, D. G. Kuzin, A. V. Tetenov, “Angles between sets and the gluing of quasisymmetric mappings in metric space”, Russian Math. (Izv. VUZov), 49:10 (2005), 1–10 | MR | Zbl

[7] V. V. Aseev, “Generalized angles in Ptolemaic Möbius structures”, Sib. Math. J., 59:2 (2018), 189–201 | DOI | MR | Zbl

[8] V. V. Aseev, “Generalized angles in Ptolemaic Möbius structures II”, Sib. Math. J., 59:5 (2018), 768–777 | DOI | MR | Zbl

[9] V. V. Aseev, “On coordinate vector-functions of quasiregular mappings”, Sib. Electron. Math. Izv., 15 (2018), 768–772 | DOI | MR | Zbl

[10] V. V. Aseev, “Multivalued mappings with the quasimöbius property”, Siberian Math. J., 60:5 (2019), 741–756 | DOI | Zbl