The discrete Wiener--Hopf equation with submultiplicative asymptotics of the solution
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1600-1611

Voir la notice de l'article provenant de la source Math-Net.Ru

The discrete Wiener–Hopf equation is considered whose kernel is an arithmetic probability distribution with positive mean. The nonhomogeneous term behaves like a nondecreasing submultiplicative sequence. Asymptotic properties of the solution are established depending on the asymptotics of the submultiplicative sequence.
Keywords: discrete Wiener–Hopf equation, nonhomogeneous equation, arithmetic probability distribution, positive mean, submultiplicative sequence, regularly varying function, asymptotic behavior.
@article{SEMR_2019_16_a142,
     author = {M. S. Sgibnev},
     title = {The discrete {Wiener--Hopf} equation with submultiplicative asymptotics of the solution},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1600--1611},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a142/}
}
TY  - JOUR
AU  - M. S. Sgibnev
TI  - The discrete Wiener--Hopf equation with submultiplicative asymptotics of the solution
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1600
EP  - 1611
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a142/
LA  - ru
ID  - SEMR_2019_16_a142
ER  - 
%0 Journal Article
%A M. S. Sgibnev
%T The discrete Wiener--Hopf equation with submultiplicative asymptotics of the solution
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1600-1611
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a142/
%G ru
%F SEMR_2019_16_a142
M. S. Sgibnev. The discrete Wiener--Hopf equation with submultiplicative asymptotics of the solution. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1600-1611. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a142/