Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a139, author = {I. A. Krishtal and N. B. Uskova}, title = {Spectral properties of first-order differential operators with an involution and groups of operators}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1091--1132}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a139/} }
TY - JOUR AU - I. A. Krishtal AU - N. B. Uskova TI - Spectral properties of first-order differential operators with an involution and groups of operators JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1091 EP - 1132 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a139/ LA - ru ID - SEMR_2019_16_a139 ER -
%0 Journal Article %A I. A. Krishtal %A N. B. Uskova %T Spectral properties of first-order differential operators with an involution and groups of operators %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 1091-1132 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a139/ %G ru %F SEMR_2019_16_a139
I. A. Krishtal; N. B. Uskova. Spectral properties of first-order differential operators with an involution and groups of operators. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1091-1132. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a139/
[1] N.K. Karapetjans, S.G. Samko, “Singular integral operators with Carleman shift in the case of piecewise continuous coefficients”, Izv. Vys. Ucheb. Zaved. Mathematika, 1975, no. 2, 43–54 (in Russian) | Zbl
[2] A.A. Andreev, E.N. Ogorodnikov, “On the correctness of initial boundary value problems for a single hyperbolic equation with degeneration of order and involutive deviation”, Vestnik Samar. Gos. Tekhn. Univ. Ser. Phys. Math., 9 (2000), 32–36 (in Russian)
[3] A.A. Andreev, “Analogs of classical boundary value problems for a second order differential equation with deviating argument”, Differ. Equ., 40:8 (2004), 1192–1194 | Zbl
[4] M. Sh. Burlutskaya, V.P. Kurdyumov, A.S. Lukonina, A.P. Khromov, “A functional-differential operator with involution”, Dokl. Math., 75:3 (2007), 399–402 | Zbl
[5] M. Sh. Burlutskaya, A.P. Khromov, “On the same theorem on a equiconvergence at the whole segment for the functional-differential operators”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 9:4–2 (2009), 3–10 (in Russian)
[6] M. Sh. Burlutskaya, A.P. Khromov, “On classical solution of a mixed problem for equation of first order with involution”, Vestnik Voronezh. Gos. Univ. Phys. Math., 2 (2010), 26–33 (in Russian) | Zbl
[7] M.Sh. Burlutskaya, A.P. Khromov, “Classical solution of a mixed problem with involution”, Dokl. Math., 82:3 (2010), 865–868 | Zbl
[8] A.P. Khromov, “The mixed problem for the differential equation with involution and potential of the special kind”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 10:4 (2010), 17–22 (in Russian)
[9] M. Sh. Burlutskaya, A.P. Khromov, “Substantiation of Fourier method in mixed problem with involution”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 11:4 (2011), 3–12 (in Russian)
[10] M. Sh. Burlutskaya, “Asymptotic formulas for its own values and its own functions of a functional differential operator with involution”, Vestnik Voronezh. Gos. Univ. Phys. Math., 2 (2011), 64–72 (in Russian)
[11] M.Sh. Burlutskaya, A.P. Khromov, “Initial boundary value problems for first-order hyperbolic equations with involution”, Dokl. Math., 84:3 (2011), 783–786 | Zbl
[12] M.Sh. Burlutskaya, A.P. Khromov, “The Steinhaus theorem on equiconvergence for functional-differential operators”, Math. Notes, 90:1–2 (2011), 20–31 | MR
[13] M.Sh. Burlutskaya, A.P. Khromov, “Fourier method in an initial boundary value problem for a first-order partial differential equation with involution”, Comput. Math. Math. Phys., 51:12 (2011), 2102–2114 | MR
[14] M.Sh. Burlutskaya, “Jordan-Dirichlet theorem for functional-differential operator with involution”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 13:3 (2013), 9–14 (in Russian) | Zbl
[15] M.Sh. Burlutskaya, A.P. Khromov, “Mixed problem for simplest hyperbolic first-order equations with involution”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 14:1 (2014), 10–20 (in Russian)
[16] M.Sh. Burlutskaya, “Mixed problem for the first-order partial differential equation with involution and periodic boundary conditions”, Comput. Math. Math. Phys., 54:1 (2014), 1–10
[17] M.Sh. Burlutskaya, A.P. Khromov, “Functional differential operators with involution and Dirac operators with periodic boundary conditions”, Dokl. Math., 89:1 (2014), 8–10 | Zbl
[18] M.Sh. Burlutskaya, S.A. Cherednikova, “The classical solution of the mixed problem for the equation with involution and two-point boundary conditions”, Vestnik Voronezh. Gos. Univ. Phys. Math., 3 (2016), 71–79 (in Russian) | Zbl
[19] S.S. Platonov, “Eigenfunction expansion for some functional differential operators”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 11 (2004), 14–34 (in Russian) | Zbl
[20] L.V. Kritskov, A.M. Sarsenbi, “Riesz basis property of system of root functions of second-order differential operator with involution”, Differ. Equ., 53:1 (2017), 33–46 | Zbl
[21] A.G. Baskakov, I.A. Krishtal, E.Yu. Romanova, “Spectral analysis of a differential operator with an involution”, J. Evol. Equat., 17 (2017), 669–684 | Zbl
[22] A.G. Baskakov, N.B. Uskova, “A generalized Fourier method for the system of first-order differential equations with an involution and a group of operators”, Differ. Equ., 54:2 (2018), 277–281 | MR
[23] A.G. Baskakov, I.A. Krishtal, N.B. Uskova, “Linear differential operator with an involution as a generator of an operator group”, Operators and Matrices, 12:3 (2018), 723–756 | MR
[24] A.G. Baskakov, N.B. Uskova, “Fourier method for first order differential equations with an involution and groups of operators”, Ufa Math. J., 10:3 (2018), 11–34
[25] N.B. Uskova, “Asymptotic of eigenvalues of scalar differential operator with an involution”, Belgorod State University. Sci. Bull. Math. Phys., 49:27 (279) (2017), 42–44 (in Russian)
[26] A.G. Baskakov, N.B. Uskova, “Spectral analysis of differential operator with an involution and a group of operators”, Differ. Equ., 54:9 (2018), 1287–1291 | Zbl
[27] A.G. Baskakov, “Methods of abstract harmonic analysis in the perturbation of linear operators”, Siberian Math. J., 24:1 (1983), 17–32 | MR
[28] A.G. Baskakov, A.V. Derbushev, A.O. Shcherbakov, “The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials”, Izv. Math., 75:3 (2011), 445–469 | MR
[29] A.G. Baskakov, D.M. Polyakov, “The method of similar operators in the spectral analysis of the Hill operator with nonsmooth potential”, Sb. Math., 208:1 (2017), 1–43 | MR
[30] N.B. Uskova, “On the spectral properties of a second order differential operator with a matrix potential”, Differ. Equ., 52:5 (2016), 579–588 | MR
[31] R.E. Kalman, R.S. Bucy, “New results in linear filtering and prediction theory”, Trans. ASME. Ser. D.J. Basic Eng., 86 (1961), 95–108
[32] D. Przeworska-Rolewicz, Equations with transformed argument: Algebraic approach, Polish. Sci. Publ., Warsaw, 1973
[33] V.A. Pliss, Nonlocal problems of oscillations theory, Nauka, M., 1964 (in Russian) | Zbl
[34] J. Wu, Theory and applications of partial functional differential equations, Springer, New York, 1996 | Zbl
[35] J. Wiener, A.R. Aftabizadeh, “Boundary value problems for differential equations with reflection of the argument”, Intern. J. Math. Math. Sci., 8:1 (1985), 151–163 | Zbl
[36] D. Piao, “Periodic and almost periodic solutions for differential equations with reflection of the argument”, Nonlinear Anal., 57:4 (2004), 633–637 | Zbl
[37] A. Cabada, F.A.F. Tojo, “Existence results for a linear equations with reflection, non-constant coefficient and periodic boundary conditions”, J. Math. Anal. Appl., 412:1 (2014), 529–546 | Zbl
[38] A. Cabada, F.A.F. Tojo, “Solutions and Green's function of the first order linear equation with reflection and initial conditions”, Boundary Value Probl., 99 (2014), 1–16 | Zbl
[39] W. Watkins, “Asymptotic properties of differential equations with involutions”, Int. J. Pure. Appl. Math., 44:4 (2008), 485–492 | Zbl
[40] A.A. Kopzhassarova, A.L. Lukashov, A.M. Sarsenbi, “Spectral properties of non-self-adjoint perturbations for a spectral problem with involution”, Abstr. Appl. Anal., 2012, 590781
[41] A.A. Kopzhassarova, A.M. Sarsenbi, “Basis properties of eigenfunctions of second-order differential operators with involution”, Abstr. Appl. Anal., 2012, 576843
[42] M.A. Sadybekov, A.M. Sarsenbi, “Criterion for the basis property of the eigenfunction system of a multiple differentiation operator with an involution”, Differ. Equ., 48:8 (2012), 1112–1118 | Zbl
[43] L.V. Kritskov, A.M. Sarsenbi, “Spectral properties of a nonlocal problem for a second-order differential equation with an involution”, Differ. Equ., 51:7 (2015), 984–990 | Zbl
[44] L.V. Kritskov, A.M. Sarsenbi, “Basicity in $L_p$ of root functions for differential equations with involution”, Electr. J. Differ. Equat., 278 (2015), 1–9 | Zbl
[45] I. Ts. Gohberg, M.G. Krein, An Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, Amer. Math. Soc., Providence, RI, 1969 | MR
[46] A. S. Markus, “On a basis of root vectors of a dissipative operator”, Soviet Math. Dokl., 1 (1960), 599–602 | Zbl
[47] M. K. Fage, “Idempotent operators and their rectification”, Doklady Akad. Nauk SSSR (N.S.), 73 (1950), 895–897 (in Russian) | Zbl
[48] N. Bary, “Sur les bases dans l'espace de Hilbert”, Doklady Akad. Nauk SSSR (N.S.), 54 (1946), 379–382 | Zbl
[49] A.G. Baskakov, Harmonic analysis of linear operators, Izdatelstvo VSU, Voronezh, 1987 (in Russian) | MR
[50] A.G. Baskakov, I.A. Krishtal, N.B. Uskova, General Dirac operators as generators of operator groups, arXiv: 1806.10831
[51] G.V. Garkavenko, N.B. Uskova, “The asymptotic of eigenvalues of difference operator with growing potential and groups of operators”, Mathem. Fiz. Comp. Model., 20:4 (2017), 6–17 (in Russian)
[52] G.V. Garkavenko, A.R. Zgolich, N.B. Uskova, “Spectral analysis of a difference operator with a growing potential”, J. Phys.: Conf. Series, 973 (2018) | DOI | MR
[53] W. Arendt, C.J.K. Betty, M. Hieber, F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, Birkhäuser/Springer, Basel, 2011 | Zbl
[54] S.G. Krein, Linear equations in Banach spaces, Birkhäuser, Boston, 1982 | Zbl
[55] E. Hille, R.S. Phillips, Functional analysis and semi-groups, AMS, Providense, RI, 1962
[56] K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equation, Springer-Verlag, New-York, 2000 | Zbl
[57] A.G. Baskakov, “Estimates for Green's function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear relations”, Sb. Math., 205:8 (2015), 1049–1086 | Zbl
[58] A.G. Baskakov, V.B. Didenko, “On invertibility states of differential and difference operators”, Izv. Math., 82:1 (2018), 1–13 | Zbl
[59] A.G. Baskakov, V.B. Didenko, “Spectral analysis of differential operators with unbounded periodic coefficients”, Differ. Equ., 51:3 (2015), 325–341 | Zbl
[60] A.G. Baskakov, A.S. Zagorskii, “Spectral theory of linear relations on real Banach spaces”, Math. Notes, 82:1 (2007), 15–27 | Zbl
[61] A.G. Baskakov, “Spectral criteria for almost periodicity of solutions of functional equations”, Math. Notes, 24:2 (1978), 606–612 | Zbl
[62] B.M. Levitan, V.V. Zhikov, Almost periodic functions and differential equations, Cambridge Univ. Press, Cambridge, 1982 | Zbl
[63] A.G. Baskakov, “Harmonic and spectral analysis of power bounded operators and bounded semigroups of operators on Banach spaces”, Math. Notes, 98:2 (2015), 164–178 | Zbl
[64] A.G. Baskakov, “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russ. Math. Surv., 68:1 (2013), 69–116 | Zbl
[65] K.O. Friedrichs, Lectures on advanced ordinary differential equations. Notes by P. Berg, W. Hirsch, P. Treuenfels, Gordon and Breach Science Publishers, New York, 1965
[66] A.G. Baskakov, “The Krylov-Bogolyubov substitution in the theory of perturbations of linear operators”, Ukrainian Math. J., 36:5 (1984), 451–455 | Zbl
[67] R.F.L. Turner, “Perturbation of compact spectral operators”, Comm. Pure. Appl. Math., 18 (1965), 519–541 | Zbl
[68] N.B. Uskova, “On a result of R. Turner”, Math. Notes, 76:6 (2004), 844–854 | MR
[69] A.G. Baskakov, The Krylov-Bogolyubov replacement in the theory of nonlinear perturbations of linear operators, Keldysh Institute preprints, 1980
[70] A.G. Baskakov, “A theorem on splitting an operator, and some related questions in the analytic theory of perturbations”, Math. USSR-Izv., 28:3 (1987), 421–444 | MR
[71] A.G. Baskakov, “The averaging method in the theory of perturbations of linear differential operators”, Differ. Equ., 21:4 (1985), 555–562 (in Russian) | MR
[72] A.G. Baskakov, T.K. Katsaran, “Spectral analysis of integro-differential operators with nonlocal boundary conditions”, Differ. Equ., 24:8 (1988), 934–941 | Zbl
[73] A.G. Baskakov, “Spectral analysis of perturbed nonquasianalytic and spectral operators”, Izv. Math., 45:1 (1995), 1–31 | MR
[74] A.G. Baskakov, “An abstract analog of the Krylov-Bogolyubov transformation in the perturbation theory of linear operators”, Funct. Anal. Appl., 33:2 (1999), 144–147 | Zbl
[75] N.B. Uskova, “The matrix analysis of spectral projections for the pertubed self-adjoint operators”, Siberian Electronic Mathematical Reports, 16 (2019), 369–405 (in Russian) | Zbl
[76] D.M. Polyakov, “On the spectral characteristics of non-self-adjoint fourth-order operators with matrix coefficients”, Math. Notes, 105:4 (2019), 630–635 | Zbl
[77] D.M. Polyakov, “A one-dimensional Schrödinger operator with square-integrable potential”, Siberian Math. J., 59:3 (2018), 470–485 | Zbl
[78] G.V. Garkavenko, A.R. Zgolich, N.B. Uskova, “Spectral analysis of one class of the integro-differential operators”, J. Phys: Conf. Series, 1203 (2019), 012102
[79] G.V. Garkavenko, N.B. Uskova, “Method of similar operators in research of spectral properties of difference operators with growing potentials”, Siberian Electronic Mathematical Reports, 14 (2017), 673–689 (in Russian) | Zbl
[80] A. G. Baskakov, I. A. Krishtal, N. B. Uskova, “Similarity techniques in the spectral analysis of perturbed operator matrices”, J. Math. Anal. Appl., 477 (2019), 930–960 | Zbl
[81] W. Rudin, Functional analysis, McGraw-Hill book, 1973
[82] V.A. Sadovnichii, Operator theory, MSU, M., 2004 (in Russian)
[83] N. Dunford, J.T. Schwartz, Linear operators. Spectral operators, v. III, Pure and Applied Mathematics, VII, Wiley-Interscience, New York, 1971 | MR
[84] A.G. Baskakov, “Estimates for the entries of inverse matrices and the spectral analysis of linear operators”, Izv. Math., 61:6 (1997), 1113–1135 | MR
[85] A.G. Baskakov, I.A. Krishtal, “Memory estimation of inverse operators”, J. Funct. Anal., 267:8 (2014), 2551–2605 | MR