Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a136, author = {A. V. Greshnov}, title = {Hyperspaces that satisfy $cc$-homogeneous cone condition on canonical {Heisenberg} and {Engel} groups}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {938--948}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a136/} }
TY - JOUR AU - A. V. Greshnov TI - Hyperspaces that satisfy $cc$-homogeneous cone condition on canonical Heisenberg and Engel groups JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 938 EP - 948 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a136/ LA - ru ID - SEMR_2019_16_a136 ER -
%0 Journal Article %A A. V. Greshnov %T Hyperspaces that satisfy $cc$-homogeneous cone condition on canonical Heisenberg and Engel groups %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 938-948 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a136/ %G ru %F SEMR_2019_16_a136
A. V. Greshnov. Hyperspaces that satisfy $cc$-homogeneous cone condition on canonical Heisenberg and Engel groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 938-948. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a136/
[1] Postnikov M. M., Lie groups and algebras, Lectures in geometry, Semester V, «Nauka», M., 1982 | MR | Zbl
[2] Greshnov A. V., “On uniform and NTA-domains on Carnot groups”, Siberian Math. J., 42:5 (2001), 851–864 | DOI | MR | Zbl
[3] Greshnov A. V., Tryamkin M. V., “Exact values of constants in the generalized triangle inequality for some $(1,q_2)$-quasimetrics on canonical Carnot groups”, Mathematical Notes, 98:3–4 (2015), 694–698 | DOI | MR | Zbl
[4] Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie groups and potential theory for their sub-Laplacian, Springer Monographs in Mathematics, Springer, Berlin, 2007 | MR
[5] Capogna L., Garofalo N., “Non tangentially accassible domains for Carnot-Carathéodory metrics and a Fatou type theorem”, C. R. Acad. Sci. Paris. Sér. I Math., 321:12 (1995), 1565–1570 | MR | Zbl
[6] Jones P., “Extension theorems for BMO”, Indiana Univ. Math., 29:1 (1980), 41–66 | DOI | MR | Zbl
[7] Jones P., “Quasiconformal mappinga and extendability of functions in Sobolev spaces”, Acta Math., 147 (1981), 71–88 | DOI | MR | Zbl
[8] Greshnov A. V., “On the existence of domains that satisfy inner and outer spiral conditions”, Mat. Tr., 5:2 (2002), 138–154 (in Russian) | MR | Zbl
[9] Capogna L., Garofalo N., “Boundary behavior of non-negative solutions of subelliptic equations in NTA-domains for Carnot-Carathéodory metrics”, J. Fourier Anal. Appl., 4:4–5 (1998), 403–432 | DOI | MR | Zbl
[10] Monti R., Morbidelli D., “Regular domains in homogeneous groups”, TAMS, 357:8 (2005), 2975–3011 | DOI | MR | Zbl