Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a135, author = {Yu. E. Spivak}, title = {Optimization method in {2D} magnetic cloaking problems}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {812--825}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a135/} }
Yu. E. Spivak. Optimization method in 2D magnetic cloaking problems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 812-825. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a135/
[1] L.S. Dolin, “On a possibility of comparison of three-dimensional electromagnetic systems with nonuniform anisotropic filling”, Izv. Vuzov Radiofizika, 4 (1961), 964–967
[2] J.B. Pendry, D. Shurig, D.R. Smith, “Controlling electromagnetic fields”, Science, 312 (2006), 1780–1782 | DOI | MR | Zbl
[3] U. Leonhardt, “Optical conformal mapping”, Science, 312 (2006), 1777–1780 | DOI | MR | Zbl
[4] S.A. Cummer, D. Shurig, “One path to acoustic cloaking”, New Journal of Physics, 9 (2007), 45 | DOI
[5] H. Chen, C.T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials”, Applied Physics Letters, 91 (2007), 183518 | DOI
[6] S.A. Cummer, B.-I. Popa, D. Shurig, et al.,, “Scattering theory derivation of a 3D acoustic cloaking shell”, Phys. Rev. Lett., 100 (2008), 024301 | DOI
[7] B. Wood, J.B. Pendry, “Metamaterials at zero frequency”, J. Phys.: Condens. Matter., 19 (2007), 076208 | DOI
[8] A. Sanchez, C. Navau, J. Prat-Camps, D.-X. Chen, “Antimagnets: controlling magnetic fields with superconductormetamaterial hybrids”, New J. Phys., 13 (2011), 093034 | DOI
[9] G.V. Alekseev, Invisibility problem in acoustics, optics and heat transfer, Dalnauka, Vladivostok, 2016 (in Russian)
[10] A.E. Dubinov, L.A. Mytareva, “Invisible cloaking of material bodies using the wave flow method”, Physics Uspekhi, 53 (2010), 455–479 | DOI
[11] A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann, “Isotropic transformation optics: approximate acoustic and quantum cloaking”, New Journ. of Phys., 10 (2008), 115024 | DOI | MR
[12] H. Liu, T. Zhou, “Transformation optics and approximate cloaking”, Contemp. Math., 559, 2011, 65–83 | DOI | MR | Zbl
[13] G.V. Alekseev, V.G. Romanov, “One class of nonscattering acoustic shells for a model of anisotropic acoustics”, Sib. Zh. Ind. Mat., 14 (2011), 15–20 | MR | Zbl
[14] V.G. Romanov, Yu.A. Chirkunov, “Nonscattering acoustic objects in an anisotropic medium of special kind”, Dokl. Math., 87:1 (2013), 73–75 | DOI | MR | Zbl
[15] Y.A. Chirkunov, “Nonscattering acoustic objects in a medium with a spherical stratification”, Acta Mech., 228:7 (2017), 2533–2539 | DOI | MR | Zbl
[16] S. Xu, Y. Wang, B. Zhang, H. Chen, “Invisibility cloaks from forward design to inverse design”, Science China Information Sciences, 56 (2013), 120408
[17] B.-I. Popa, S.A. Cummer, “Cloaking with optimized homogeneous anisotropic layers”, Phys. Rev. A, 79 (2009), 023806 | DOI
[18] X.H. Wang, E.A. Semouchkina, “A route for efficient non-resonance cloaking by using multilayer dielectric coating”, Appl. Phys. Lett., 102 (2013), 113506 | DOI
[19] A. Mirzaei, A.E. Miroshnichenko, I.V. Shadrivov, Y.S. Kivshar, “All-dielectric multilayer cylindrical structures for invisibility cloaking”, Scientific Reports, 5 (2015), 5:9574 | DOI | Zbl
[20] G.V. Alekseev, “Optimization in problems of material-body cloaking using the wave-flow method”, Doklady Physics, 58:4 (2013), 147–151 | DOI | MR
[21] G.V. Alekseev, “Cloaking via impedance boundary condition for 2-D Helmholtz equation”, Appl. Anal., 93:2 (2014), 254–268 | DOI | MR | Zbl
[22] G.V. Alekseev, “Control of boundary impedance in two-dimensional material-body cloaking by the wave flow method”, Comp. Math. Mathem. Phys., 53:12 (2013), 1853–1869 | DOI | MR | Zbl
[23] G.V. Alekseev, “Stability estimates in the problem of cloaking material bodies for Maxwell's equations”, Comp. Math. Mathem. Phys., 54:12 (2014), 1788–1803 | DOI | MR | Zbl
[24] G.V. Alekseev, Yu.E. Spivak, “Analysis of the 3D acoustic cloaking problems using optimization method”, J. of Phys. Conf. Series, 722 (2016), 012002 | DOI
[25] G.V. Alekseev, A.V. Lobanov, Yu.E. Spivak, “Optimization method in problems of acoustic cloaking of material bodies”, Comp. Math. Mathem. Phys., 57:9 (2017), 1459–1474 | DOI | MR | Zbl
[26] D.S. Anikonov, V.G. Nazarov, I.V. Prokhorov, “Visible and invisible media in tomography”, Dokl. Math., 56:3 (1997), 955–958 | MR | Zbl
[27] D.S. Anikonov, I.V. Prokhorov, “Necessary and sufficient conditions for the uniqueness of a solution to a tomography problem”, Comp. Math. Mathem. Phys., 42:3 (2002), 353–362 | MR | Zbl
[28] H. Han, X. Wu, Artificial Boundary Method, Springer-Verlag, Berlin; Tsinghua University Press, Beijing, 2013 | MR | Zbl
[29] A.N. Tikhonov, V. Ya. Arsenin, Methods for solving ill-posed problems, Nauka, M., 1974 (in Russian) | MR | Zbl
[30] A.D. Ioffe, V.M. Tikhomirov, Theory of extremal problems, Elsevier, Amsterdam, 1978 | MR
[31] G.V. Alekseev, V.A. Levin, D.A. Tereshko, “Optimization analysis of the thermal cloaking problem for a cylindrical body”, Doklady Physics, 62 (2017), 71–75 | DOI | MR