Optimization method in 2D magnetic cloaking problems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 812-825.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the optimization problem for the 2D model of magnetic scattering by a permeable obstacle having the form of a circular ring. Problems of this type arise while developing the design technologies of magnetic cloaking devices using the optimization method. The solvability of direct and control problems for the magnetic scattering model under study is proved. The sufficient conditions which provide local uniqueness and stability of optimal solutions are established.
Keywords: magnetic scattering problem, invisibility, cloaking, optimization problem, solvability, uniqueness, stability estimates.
@article{SEMR_2019_16_a135,
     author = {Yu. E. Spivak},
     title = {Optimization method in {2D} magnetic cloaking problems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {812--825},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a135/}
}
TY  - JOUR
AU  - Yu. E. Spivak
TI  - Optimization method in 2D magnetic cloaking problems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 812
EP  - 825
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a135/
LA  - ru
ID  - SEMR_2019_16_a135
ER  - 
%0 Journal Article
%A Yu. E. Spivak
%T Optimization method in 2D magnetic cloaking problems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 812-825
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a135/
%G ru
%F SEMR_2019_16_a135
Yu. E. Spivak. Optimization method in 2D magnetic cloaking problems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 812-825. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a135/

[1] L.S. Dolin, “On a possibility of comparison of three-dimensional electromagnetic systems with nonuniform anisotropic filling”, Izv. Vuzov Radiofizika, 4 (1961), 964–967

[2] J.B. Pendry, D. Shurig, D.R. Smith, “Controlling electromagnetic fields”, Science, 312 (2006), 1780–1782 | DOI | MR | Zbl

[3] U. Leonhardt, “Optical conformal mapping”, Science, 312 (2006), 1777–1780 | DOI | MR | Zbl

[4] S.A. Cummer, D. Shurig, “One path to acoustic cloaking”, New Journal of Physics, 9 (2007), 45 | DOI

[5] H. Chen, C.T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials”, Applied Physics Letters, 91 (2007), 183518 | DOI

[6] S.A. Cummer, B.-I. Popa, D. Shurig, et al.,, “Scattering theory derivation of a 3D acoustic cloaking shell”, Phys. Rev. Lett., 100 (2008), 024301 | DOI

[7] B. Wood, J.B. Pendry, “Metamaterials at zero frequency”, J. Phys.: Condens. Matter., 19 (2007), 076208 | DOI

[8] A. Sanchez, C. Navau, J. Prat-Camps, D.-X. Chen, “Antimagnets: controlling magnetic fields with superconductormetamaterial hybrids”, New J. Phys., 13 (2011), 093034 | DOI

[9] G.V. Alekseev, Invisibility problem in acoustics, optics and heat transfer, Dalnauka, Vladivostok, 2016 (in Russian)

[10] A.E. Dubinov, L.A. Mytareva, “Invisible cloaking of material bodies using the wave flow method”, Physics Uspekhi, 53 (2010), 455–479 | DOI

[11] A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann, “Isotropic transformation optics: approximate acoustic and quantum cloaking”, New Journ. of Phys., 10 (2008), 115024 | DOI | MR

[12] H. Liu, T. Zhou, “Transformation optics and approximate cloaking”, Contemp. Math., 559, 2011, 65–83 | DOI | MR | Zbl

[13] G.V. Alekseev, V.G. Romanov, “One class of nonscattering acoustic shells for a model of anisotropic acoustics”, Sib. Zh. Ind. Mat., 14 (2011), 15–20 | MR | Zbl

[14] V.G. Romanov, Yu.A. Chirkunov, “Nonscattering acoustic objects in an anisotropic medium of special kind”, Dokl. Math., 87:1 (2013), 73–75 | DOI | MR | Zbl

[15] Y.A. Chirkunov, “Nonscattering acoustic objects in a medium with a spherical stratification”, Acta Mech., 228:7 (2017), 2533–2539 | DOI | MR | Zbl

[16] S. Xu, Y. Wang, B. Zhang, H. Chen, “Invisibility cloaks from forward design to inverse design”, Science China Information Sciences, 56 (2013), 120408

[17] B.-I. Popa, S.A. Cummer, “Cloaking with optimized homogeneous anisotropic layers”, Phys. Rev. A, 79 (2009), 023806 | DOI

[18] X.H. Wang, E.A. Semouchkina, “A route for efficient non-resonance cloaking by using multilayer dielectric coating”, Appl. Phys. Lett., 102 (2013), 113506 | DOI

[19] A. Mirzaei, A.E. Miroshnichenko, I.V. Shadrivov, Y.S. Kivshar, “All-dielectric multilayer cylindrical structures for invisibility cloaking”, Scientific Reports, 5 (2015), 5:9574 | DOI | Zbl

[20] G.V. Alekseev, “Optimization in problems of material-body cloaking using the wave-flow method”, Doklady Physics, 58:4 (2013), 147–151 | DOI | MR

[21] G.V. Alekseev, “Cloaking via impedance boundary condition for 2-D Helmholtz equation”, Appl. Anal., 93:2 (2014), 254–268 | DOI | MR | Zbl

[22] G.V. Alekseev, “Control of boundary impedance in two-dimensional material-body cloaking by the wave flow method”, Comp. Math. Mathem. Phys., 53:12 (2013), 1853–1869 | DOI | MR | Zbl

[23] G.V. Alekseev, “Stability estimates in the problem of cloaking material bodies for Maxwell's equations”, Comp. Math. Mathem. Phys., 54:12 (2014), 1788–1803 | DOI | MR | Zbl

[24] G.V. Alekseev, Yu.E. Spivak, “Analysis of the 3D acoustic cloaking problems using optimization method”, J. of Phys. Conf. Series, 722 (2016), 012002 | DOI

[25] G.V. Alekseev, A.V. Lobanov, Yu.E. Spivak, “Optimization method in problems of acoustic cloaking of material bodies”, Comp. Math. Mathem. Phys., 57:9 (2017), 1459–1474 | DOI | MR | Zbl

[26] D.S. Anikonov, V.G. Nazarov, I.V. Prokhorov, “Visible and invisible media in tomography”, Dokl. Math., 56:3 (1997), 955–958 | MR | Zbl

[27] D.S. Anikonov, I.V. Prokhorov, “Necessary and sufficient conditions for the uniqueness of a solution to a tomography problem”, Comp. Math. Mathem. Phys., 42:3 (2002), 353–362 | MR | Zbl

[28] H. Han, X. Wu, Artificial Boundary Method, Springer-Verlag, Berlin; Tsinghua University Press, Beijing, 2013 | MR | Zbl

[29] A.N. Tikhonov, V. Ya. Arsenin, Methods for solving ill-posed problems, Nauka, M., 1974 (in Russian) | MR | Zbl

[30] A.D. Ioffe, V.M. Tikhomirov, Theory of extremal problems, Elsevier, Amsterdam, 1978 | MR

[31] G.V. Alekseev, V.A. Levin, D.A. Tereshko, “Optimization analysis of the thermal cloaking problem for a cylindrical body”, Doklady Physics, 62 (2017), 71–75 | DOI | MR