@article{SEMR_2019_16_a133,
author = {M. S. Sgibnev},
title = {The {Wiener{\textendash}Hopf} equation in measures with probability kernel},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {609--617},
year = {2019},
volume = {16},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a133/}
}
M. S. Sgibnev. The Wiener–Hopf equation in measures with probability kernel. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 609-617. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a133/
[1] V.A. Fock, “On some integral equations of mathematical physics”, Matematicheskiĭ Sbornik, 14:1–2 (1944), 3–50 | MR | Zbl
[2] M.S. Sgibnev, “Wiener-Hopf equation whose kernel is a probability distribution”, Differential equations, 53:9 (2017), 1209–1231 | DOI | MR | Zbl
[3] M.S. Sgibnev, “On the inhomogeneous conservative Wiener-Hopf equation”, Siberian Mathematical Journal, 58:6 (2017), 1090–1103 | DOI | MR | Zbl
[4] W. Feller, An Introduction to Probability Theory and its Applications, v. II, John Wiley Sons, New York–London–Sydney, 1966 | MR | Zbl
[5] J. Neveu, Bases Mathématiques du Calcul des Probabilités, Masson et Cie, Paris, 1964 | MR
[6] V.I. Dmitriev, “The Wiener-Hopf equation”, Mathematical Encyclopedia, v. 1, Sovetskaya `Entsiklopediya, M., 1977, 697–698 (Russian)
[7] F.D Gakhov, Yu.I. Cherskiĭ, Equations of the convolution type, Nauka, M., 1978 (Russian) | MR
[8] G. Alsmeyer, Erneuerungstheorie, B.G. Teubner, Stuttgart, 1991 | MR | Zbl
[9] E. Lukacs, Characteristic Functions, Second Edition, Griffin, London, 1970 | MR | Zbl
[10] M. Loève, Probability Theory, Second Edition, D. Van Nostrand Company Inc. Princeton, New Jersey–Toronto–New York–London, 1960 | MR | Zbl