The matrix analysis of spectral projections for the perturbed self-adjoint operators
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 369-405.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study bounded perturbations of an unbounded positive definite self-adjoint operator with discrete spectrum. The spectrum has semi-simple eigenvalues with finite geometric multiplicity and the perturbation belongs to operator space defined by rate of the off-diagonal decay of the operator matrix. We show that the spectral projections and the resolvent of the perturbed operator belong to the same space as the perturbation. These results are applied to the Hill operator and the operator with matrix potential. We also consider the inverse problem and the modified Galerkin method.
Keywords: the method of similar operators, the Hill operator, spectral projection.
@article{SEMR_2019_16_a130,
     author = {N. B. Uskova},
     title = {The matrix analysis of spectral projections for the perturbed self-adjoint operators},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {369--405},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a130/}
}
TY  - JOUR
AU  - N. B. Uskova
TI  - The matrix analysis of spectral projections for the perturbed self-adjoint operators
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 369
EP  - 405
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a130/
LA  - ru
ID  - SEMR_2019_16_a130
ER  - 
%0 Journal Article
%A N. B. Uskova
%T The matrix analysis of spectral projections for the perturbed self-adjoint operators
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 369-405
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a130/
%G ru
%F SEMR_2019_16_a130
N. B. Uskova. The matrix analysis of spectral projections for the perturbed self-adjoint operators. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 369-405. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a130/

[1] N. Dunford, J.T. Schwartz, Linear operators. Spectral operators, v. III, Pure and Applied Mathematics, VII, Wiley-Interscience, New York, 1971 | MR | Zbl

[2] A.G. Baskakov, Harmonic analysis of linear operators, Izdatelstvo VGU, Voronezh, 1987 | MR | Zbl

[3] A.G. Baskakov, “Methods of abstract harmonic analysis in the perturbation of linear operators”, Siberian Math. J., 24:1 (1983), 17–32 | DOI | MR

[4] A.G. Baskakov, “Wiener's theorem and the asymptotic estimates of the elements of inverse matrices”, Functional Anal. Appl., 24:3 (1990), 222–224 | DOI | MR | Zbl

[5] A.G. Baskakov, “Abstract harmonic analysis and asymptotic estimates of elements of inverse matrices”, Math. Notes, 52:2 (1992), 764–771 | DOI | MR | Zbl

[6] A.G. Baskakov, “Asymptotic estimates for elements of matrices of inverse operators and harmonic analysis”, Siberian Math. J., 38:1 (1997), 10–22 | DOI | MR | Zbl

[7] A.G. Baskakov, “Estimates for the entries of inverse matrices and the spectral analysis of linear operators”, Izv. Math., 61:6 (1997), 1113–1135 | DOI | MR | Zbl

[8] A.G. Baskakov, I.A. Krishtal, “Memory estimation of inverse operators”, J. Funct. Anal., 267:8 (2014), 2551–2605 | DOI | MR | Zbl

[9] J.-P. Kahane, Series de Fourier absolument convergence, New York, 1970 | MR

[10] Q. Sun, “Wienner's lemma for infinite matrices”, Constructive Approx., 34 (2011), 209–235 | DOI | MR | Zbl

[11] Q. Sun, “Wienner's lemma for infinite matrices”, Trans. Amer. Math. Soc., 354:7 (2007), 3099–3123 | DOI | MR

[12] I.A. Krishtal, T. Strohmer, T. Wertz, “Localization of matrix factorizations”, Found. Comput. Math., 15:4 (2015), 931–951 | DOI | MR | Zbl

[13] I.A. Krishtal, “Wiener's lemma and memory localization”, J. Fourier Anal. Appl., 17:4 (2011), 674–690 | DOI | MR | Zbl

[14] I.A. Krishtal, “Wiener's lemma: pictures at an exhibition”, Rev. Un. Mat. Argentina, 52:2 (2011), 61–79 | MR | Zbl

[15] C.E. Shin, Q. Sun, “Wiener's lemma: localization and various approaches”, Appl. Math. J. Chinese Univ., 28:4 (2013), 465–484 | DOI | MR | Zbl

[16] I. Ts. Gohberg, M.G. Krein, An introduction to the theory of linear nonselfadjoint operators in Hilbert space, Amer. Math. Soc., Providence, RI, 1969 | MR

[17] Y.L. Ul'yanova, “Spectral properties of relatively finite-dimensional perturbations of selfadjoint operators”, Russian Math. (Izv. VUZ.), 41:10 (1997), 72–75 | MR | Zbl

[18] A.G. Baskakov, “Spectral analysis with respect to finite-dimensional perturbations of spectral operators”, Soviet Math. (Izv. VUZ.), 35:1 (1991), 1–11 | MR | Zbl

[19] A.G. Baskakov, A.V. Derbushev, A.O. Shcherbakov, “The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials”, Izv. Math., 75:3 (2011), 445–469 | DOI | MR | Zbl

[20] A.G. Baskakov, I.A. Krishtal, E.Yu. Romanova, “Spectral analysis of a differential operator with an involution”, J. Evol. Equat., 17 (2017), 669–684 | DOI | MR | Zbl

[21] A.G. Baskakov, I.A. Krishtal, N.B. Uskova, “Linear differential operator with an involution as a generator of an operator group”, Operators and Matrices, 12:3 (2018), 723–756 | DOI | MR | Zbl

[22] A.G. Baskakov, N.B. Uskova, “A generalized Fourier method for the system of first-order differential equations with an involution and a group of operators”, Differ. Equ., 54:2 (2018), 277–281 | DOI | MR | Zbl

[23] A.G. Baskakov, N.B. Uskova, “Spectral analysis of differential operator with an involution and a group of operators”, Differ. Equ., 54:9 (2018), 1287–1291 | DOI | MR | Zbl

[24] A.G. Baskakov, N.B. Uskova, “Fourier method for first order differential equations with an involution groups of operators”, Ufa Math. J., 10:3 (2018), 11–34 | DOI | MR

[25] A.G. Baskakov, I.A. Krishtal, N.B. Uskova, General Dirac operators as generators of operator groups, arXiv: 1806.10831

[26] A.G. Baskakov, I.A. Krishtal, N.B. Uskova, Similarity techniques in the spectral analysis of perturbed operator matrices, arXiv: 1812.10331

[27] N.B. Uskova, “Asymptotic of eigenvalues of scalar differential operator with an involution”, Belgorod State University. Sci. Bull. Math. Phys., 49:27 (279) (2017), 42–44

[28] G.V. Garkavenko, N.B. Uskova, “The asymptotic of eigenvalues of difference operator with growthing potential and groups of operators”, Mathem. Fiz. Comp. Model., 20:4 (2017), 6–17 | MR

[29] P.B. Djakov, B.S. Mityagin, “Instability zones of periodic 1-dimensional Schrödinger and Dirac operators”, Russian Math. Surv., 61:4 (2006), 663–766 | DOI | MR | Zbl

[30] P.B. Djakov, B.S. Mityagin, “Riesz basis property of Hill operators with potentials in weighted spaces”, Trans. Moscow Math. Soc., 75 (2014), 151–172 | DOI | MR | Zbl

[31] O.A. Veliev, “Non-self-adjoint Sturm-Liouville operators with matrix potentials”, Math. Notes, 81:4 (2007), 440–448 | DOI | MR | Zbl

[32] O.A. Veliev, A.A. Shkalikov, “On the Riesz basis property of the eigen- and associated functions of periodic and antiperiodic Sturm-Liouville problems”, Math. Notes, 85:6 (2009), 647–660 | MR | Zbl

[33] A.G. Baskakov, D.M. Polyakov, “The method of similar operators in the spectral analysis of the Hill operator with nonsmooth potential”, Sb. Math., 208:1 (2017), 1–43 | DOI | MR | Zbl

[34] A.G. Baskakov, D.M. Polyakov, “Spectral properties of the Hill operator”, Math. Notes, 99:4 (2016), 598–602 | DOI | MR | Zbl

[35] A.V. Karpikova, “Asymptotics for eigenvalues of Sturm-Liouville operator with periodic boundary conditions”, Ufa Math. J., 6:3 (2014), 28–34 | DOI | MR

[36] A.V. Karpikova, “Spectral analysis of the Hill-Scrödinger operator”, Belgorod State University. Sci. Bull. Math. Phys., 34:5(176) (2014), 34–37

[37] E.F. Akhmerova, “Asymptotics of the spectrum of nonsmooth perturbations of differential operators of order $2m$”, Math. Notes, 90:6 (2011), 813–823 | DOI | MR | Zbl

[38] M.S. Bichegkuev, S.V. Besaeva, “Spectral properties of difference and differential operators in weighted spaces”, Russian Math. (Izv. VUZ.), 55:2 (2011), 13–17 | DOI | MR | Zbl

[39] M.S. Bichegkuev, “Spectral analysis of differential operators with unbounded operator coefficients in weighted spaces of functions”, Math. Notes, 95:1 (2014), 15–21 | DOI | MR | Zbl

[40] M.S. Bichegkuev, “Spectral analysis of difference and differential operators in weighted spaces”, Sb. Math., 204:11 (2013), 1549–1564 | DOI | MR | Zbl

[41] N.B. Uskova, “On the spectral properties of a second order differential operator with a matrix potential”, Differ. Equ., 52:5 (2016), 579–588 | DOI | MR | Zbl

[42] N.B. Uskova, “On spectral properties of Sturm-Liouville operator with matrix potential”, Ufa Math. J., 7:3 (2015), 88–99 | DOI | MR

[43] A.G. Baskakov, “A theorem on splitting an operator and some related questions in the analytic theory of perturbations”, Math. USSR-Izv., 28:3 (1987), 421–444 | DOI | MR | Zbl

[44] A.G. Baskakov, “Spectral analysis of perturbed nonquasianalytic and spectral operators”, Izv. Math., 45:1 (1995), 1–31 | DOI | MR

[45] N.B. Uskova, “On estimates for spectral projections of perturbed selfadjoint operators”, Siberian Math. J., 41:3 (2000), 592–600 | DOI | MR

[46] D.M. Polyakov, “Spectral analysis of a fourth-order nonselfadjoint operator with nonsmooth coefficients”, Siberian Math. J., 56:1 (2015), 138–154 | DOI | MR | Zbl

[47] N.B. Uskova, “On the spectrum of some classes of differential operators”, Differ. Equ., 30:2 (1994), 328–330 | MR | Zbl

[48] D.M. Polyakov, “Spectral analysis of a fourth order differential operator with periodic and antiperiodic boundary conditions”, St. Petersburg Math. J., 27:5 (2016), 789–811 | DOI | MR | Zbl

[49] D.M. Polyakov, “On spectral properties of fourth order differential operator with periodic and semiperiodic boundary conditions”, Russian Math. (Izv. VUZ.), 59:5 (2015), 64–68 | DOI | MR | Zbl

[50] D.M. Polyakov, “Method of similar operators in spectral analysis of a fourth-order nonself-adjoint operator”, Differ. Equ., 51:3 (2015), 421–425 | DOI | MR | Zbl

[51] A.G. Baskakov, I.A. Krishtal, “On completeness of spectral subspace of linear relations and ordered pairs of linear operators”, J. Math. Anal. Appl., 407 (2013), 157–178 | DOI | MR | Zbl

[52] D.M. Polyakov, “Spectral properties of an even-order differential operator”, Differ. Equ., 52:8 (2016), 1098–1103 | DOI | MR | Zbl

[53] D.M. Polyakov, “Spectral properties of 1D Scrödinger operator”, Vestnik Voronezh. Gos. Univer. Phys. Math., 2 (2016), 146–152 | Zbl

[54] G.V. Garkavenko, N.B. Uskova, “Method of similar operators in research of spectral properties of difference operators with growthing potentials”, Siberian Electronic Mathematical Reports, 14 (2017), 673–689 | MR | Zbl

[55] G.V. Garkavenko, N.B. Uskova, “Spectral analysis of a class of difference operator with growthing potential”, Izvestiya Saratov Univ. (N.S.). Ser. Math. Mech. Inform., 16:4 (2016), 395–402 | DOI | MR | Zbl

[56] G.V. Garkavenko, N.B. Uskova, “The similar operators method in investigation of spectral properties of one class difference operators”, Vestnik Voronezh. Gos. Univer. Phys. Math., 3 (2016), 101–111 | Zbl

[57] G.V. Garkavenko, N.B. Uskova, A.R. Zgolich, “The similar operators method and spectral properties of two difference operator with order potential”, Belgorod State University. Sci. Bull. Math. Phys., 2016, no. 20(43), 42–49

[58] A.N. Shelkovoy, “Asymptotic behavior of the eigenvalues of a differential operator with non-local boundary conditions”, Belgorod State University. Sci. Bull. Math. Phys., 2016, no. 13(43), 72–80

[59] D.M. Polyakov, “A one-dimensional Schrödinger operator with square-integrable potential”, Siberian Math. J., 59:3 (2018), 470–485 | DOI | MR | Zbl

[60] I.N. Braeutigam, D.M. Polyakov, “On the asymptotics of eigenvalues of a fourth-order differential operator with matrix coefficients”, Differ. Equ., 54:4 (2018), 450–467 | DOI | MR | Zbl

[61] G.V. Garkavenko, A.R. Zgolich, N.B. Uskova, “Spectral analysis of a difference operator with a growing potential”, J. Phys. Conf. Series, 973 (2018) | DOI | MR

[62] G.V. Garkavenko, N.B. Uskova, “The theorem of the decomposition of linear operators and the asymptotic behaviour of the eigenvalues of difference operator with a growing potential”, J. Pure. Appl. Math., 18:1 (2018), 91–106 | MR

[63] N.B. Uskova, “A Pearcy-Shields problem”, Russian Math. (Izv. VUZ.), 41:10 (1997), 76–78 | MR | Zbl

[64] N.B. Uskova, “On the method of similar operators in Banach algebras”, Russian Math. (Izv. VUZ.), 49:3 (2005), 75–81 | MR | Zbl

[65] G.V. Garkavenko, “On diagonalization of certain classes of linear operators”, Russian Math. (Izv. VUZ.), 38:11 (2005), 11–16 | MR

[66] T.V. Azarnova, N.B. Uskova, “On similary transformation of operators”, Vestnik Voronezh. Gos. Univer. Phys. Math., 2 (2007), 121–126

[67] V.V. Katrakhov, S.M. Sitnik, “The transmutation method and boundary-value problem for singular elliptic equations”, SMFN, 64:2 (2018), 211–426 | MR

[68] N.B. Uskova, “Estimates for spectral expansions of eigenvectors for some classes of perturbed linear operators”, Differ. Equ., 33:4 (1997), 79–81 | MR

[69] N.B. Uskova, “On a result of R. Turner”, Math. Notes, 76:6 (2004), 844–854 | DOI | MR | Zbl

[70] M.A. Krasnoselskii and others, Solution of operator equations, Nauka, M., 1967 | MR