The matrix analysis of spectral projections for the perturbed self-adjoint operators
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 369-405

Voir la notice de l'article provenant de la source Math-Net.Ru

We study bounded perturbations of an unbounded positive definite self-adjoint operator with discrete spectrum. The spectrum has semi-simple eigenvalues with finite geometric multiplicity and the perturbation belongs to operator space defined by rate of the off-diagonal decay of the operator matrix. We show that the spectral projections and the resolvent of the perturbed operator belong to the same space as the perturbation. These results are applied to the Hill operator and the operator with matrix potential. We also consider the inverse problem and the modified Galerkin method.
Keywords: the method of similar operators, the Hill operator, spectral projection.
@article{SEMR_2019_16_a130,
     author = {N. B. Uskova},
     title = {The matrix analysis of spectral projections for the perturbed self-adjoint operators},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {369--405},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a130/}
}
TY  - JOUR
AU  - N. B. Uskova
TI  - The matrix analysis of spectral projections for the perturbed self-adjoint operators
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 369
EP  - 405
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a130/
LA  - ru
ID  - SEMR_2019_16_a130
ER  - 
%0 Journal Article
%A N. B. Uskova
%T The matrix analysis of spectral projections for the perturbed self-adjoint operators
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 369-405
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a130/
%G ru
%F SEMR_2019_16_a130
N. B. Uskova. The matrix analysis of spectral projections for the perturbed self-adjoint operators. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 369-405. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a130/