Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a130, author = {N. B. Uskova}, title = {The matrix analysis of spectral projections for the perturbed self-adjoint operators}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {369--405}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a130/} }
TY - JOUR AU - N. B. Uskova TI - The matrix analysis of spectral projections for the perturbed self-adjoint operators JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 369 EP - 405 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a130/ LA - ru ID - SEMR_2019_16_a130 ER -
N. B. Uskova. The matrix analysis of spectral projections for the perturbed self-adjoint operators. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 369-405. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a130/
[1] N. Dunford, J.T. Schwartz, Linear operators. Spectral operators, v. III, Pure and Applied Mathematics, VII, Wiley-Interscience, New York, 1971 | MR | Zbl
[2] A.G. Baskakov, Harmonic analysis of linear operators, Izdatelstvo VGU, Voronezh, 1987 | MR | Zbl
[3] A.G. Baskakov, “Methods of abstract harmonic analysis in the perturbation of linear operators”, Siberian Math. J., 24:1 (1983), 17–32 | DOI | MR
[4] A.G. Baskakov, “Wiener's theorem and the asymptotic estimates of the elements of inverse matrices”, Functional Anal. Appl., 24:3 (1990), 222–224 | DOI | MR | Zbl
[5] A.G. Baskakov, “Abstract harmonic analysis and asymptotic estimates of elements of inverse matrices”, Math. Notes, 52:2 (1992), 764–771 | DOI | MR | Zbl
[6] A.G. Baskakov, “Asymptotic estimates for elements of matrices of inverse operators and harmonic analysis”, Siberian Math. J., 38:1 (1997), 10–22 | DOI | MR | Zbl
[7] A.G. Baskakov, “Estimates for the entries of inverse matrices and the spectral analysis of linear operators”, Izv. Math., 61:6 (1997), 1113–1135 | DOI | MR | Zbl
[8] A.G. Baskakov, I.A. Krishtal, “Memory estimation of inverse operators”, J. Funct. Anal., 267:8 (2014), 2551–2605 | DOI | MR | Zbl
[9] J.-P. Kahane, Series de Fourier absolument convergence, New York, 1970 | MR
[10] Q. Sun, “Wienner's lemma for infinite matrices”, Constructive Approx., 34 (2011), 209–235 | DOI | MR | Zbl
[11] Q. Sun, “Wienner's lemma for infinite matrices”, Trans. Amer. Math. Soc., 354:7 (2007), 3099–3123 | DOI | MR
[12] I.A. Krishtal, T. Strohmer, T. Wertz, “Localization of matrix factorizations”, Found. Comput. Math., 15:4 (2015), 931–951 | DOI | MR | Zbl
[13] I.A. Krishtal, “Wiener's lemma and memory localization”, J. Fourier Anal. Appl., 17:4 (2011), 674–690 | DOI | MR | Zbl
[14] I.A. Krishtal, “Wiener's lemma: pictures at an exhibition”, Rev. Un. Mat. Argentina, 52:2 (2011), 61–79 | MR | Zbl
[15] C.E. Shin, Q. Sun, “Wiener's lemma: localization and various approaches”, Appl. Math. J. Chinese Univ., 28:4 (2013), 465–484 | DOI | MR | Zbl
[16] I. Ts. Gohberg, M.G. Krein, An introduction to the theory of linear nonselfadjoint operators in Hilbert space, Amer. Math. Soc., Providence, RI, 1969 | MR
[17] Y.L. Ul'yanova, “Spectral properties of relatively finite-dimensional perturbations of selfadjoint operators”, Russian Math. (Izv. VUZ.), 41:10 (1997), 72–75 | MR | Zbl
[18] A.G. Baskakov, “Spectral analysis with respect to finite-dimensional perturbations of spectral operators”, Soviet Math. (Izv. VUZ.), 35:1 (1991), 1–11 | MR | Zbl
[19] A.G. Baskakov, A.V. Derbushev, A.O. Shcherbakov, “The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials”, Izv. Math., 75:3 (2011), 445–469 | DOI | MR | Zbl
[20] A.G. Baskakov, I.A. Krishtal, E.Yu. Romanova, “Spectral analysis of a differential operator with an involution”, J. Evol. Equat., 17 (2017), 669–684 | DOI | MR | Zbl
[21] A.G. Baskakov, I.A. Krishtal, N.B. Uskova, “Linear differential operator with an involution as a generator of an operator group”, Operators and Matrices, 12:3 (2018), 723–756 | DOI | MR | Zbl
[22] A.G. Baskakov, N.B. Uskova, “A generalized Fourier method for the system of first-order differential equations with an involution and a group of operators”, Differ. Equ., 54:2 (2018), 277–281 | DOI | MR | Zbl
[23] A.G. Baskakov, N.B. Uskova, “Spectral analysis of differential operator with an involution and a group of operators”, Differ. Equ., 54:9 (2018), 1287–1291 | DOI | MR | Zbl
[24] A.G. Baskakov, N.B. Uskova, “Fourier method for first order differential equations with an involution groups of operators”, Ufa Math. J., 10:3 (2018), 11–34 | DOI | MR
[25] A.G. Baskakov, I.A. Krishtal, N.B. Uskova, General Dirac operators as generators of operator groups, arXiv: 1806.10831
[26] A.G. Baskakov, I.A. Krishtal, N.B. Uskova, Similarity techniques in the spectral analysis of perturbed operator matrices, arXiv: 1812.10331
[27] N.B. Uskova, “Asymptotic of eigenvalues of scalar differential operator with an involution”, Belgorod State University. Sci. Bull. Math. Phys., 49:27 (279) (2017), 42–44
[28] G.V. Garkavenko, N.B. Uskova, “The asymptotic of eigenvalues of difference operator with growthing potential and groups of operators”, Mathem. Fiz. Comp. Model., 20:4 (2017), 6–17 | MR
[29] P.B. Djakov, B.S. Mityagin, “Instability zones of periodic 1-dimensional Schrödinger and Dirac operators”, Russian Math. Surv., 61:4 (2006), 663–766 | DOI | MR | Zbl
[30] P.B. Djakov, B.S. Mityagin, “Riesz basis property of Hill operators with potentials in weighted spaces”, Trans. Moscow Math. Soc., 75 (2014), 151–172 | DOI | MR | Zbl
[31] O.A. Veliev, “Non-self-adjoint Sturm-Liouville operators with matrix potentials”, Math. Notes, 81:4 (2007), 440–448 | DOI | MR | Zbl
[32] O.A. Veliev, A.A. Shkalikov, “On the Riesz basis property of the eigen- and associated functions of periodic and antiperiodic Sturm-Liouville problems”, Math. Notes, 85:6 (2009), 647–660 | MR | Zbl
[33] A.G. Baskakov, D.M. Polyakov, “The method of similar operators in the spectral analysis of the Hill operator with nonsmooth potential”, Sb. Math., 208:1 (2017), 1–43 | DOI | MR | Zbl
[34] A.G. Baskakov, D.M. Polyakov, “Spectral properties of the Hill operator”, Math. Notes, 99:4 (2016), 598–602 | DOI | MR | Zbl
[35] A.V. Karpikova, “Asymptotics for eigenvalues of Sturm-Liouville operator with periodic boundary conditions”, Ufa Math. J., 6:3 (2014), 28–34 | DOI | MR
[36] A.V. Karpikova, “Spectral analysis of the Hill-Scrödinger operator”, Belgorod State University. Sci. Bull. Math. Phys., 34:5(176) (2014), 34–37
[37] E.F. Akhmerova, “Asymptotics of the spectrum of nonsmooth perturbations of differential operators of order $2m$”, Math. Notes, 90:6 (2011), 813–823 | DOI | MR | Zbl
[38] M.S. Bichegkuev, S.V. Besaeva, “Spectral properties of difference and differential operators in weighted spaces”, Russian Math. (Izv. VUZ.), 55:2 (2011), 13–17 | DOI | MR | Zbl
[39] M.S. Bichegkuev, “Spectral analysis of differential operators with unbounded operator coefficients in weighted spaces of functions”, Math. Notes, 95:1 (2014), 15–21 | DOI | MR | Zbl
[40] M.S. Bichegkuev, “Spectral analysis of difference and differential operators in weighted spaces”, Sb. Math., 204:11 (2013), 1549–1564 | DOI | MR | Zbl
[41] N.B. Uskova, “On the spectral properties of a second order differential operator with a matrix potential”, Differ. Equ., 52:5 (2016), 579–588 | DOI | MR | Zbl
[42] N.B. Uskova, “On spectral properties of Sturm-Liouville operator with matrix potential”, Ufa Math. J., 7:3 (2015), 88–99 | DOI | MR
[43] A.G. Baskakov, “A theorem on splitting an operator and some related questions in the analytic theory of perturbations”, Math. USSR-Izv., 28:3 (1987), 421–444 | DOI | MR | Zbl
[44] A.G. Baskakov, “Spectral analysis of perturbed nonquasianalytic and spectral operators”, Izv. Math., 45:1 (1995), 1–31 | DOI | MR
[45] N.B. Uskova, “On estimates for spectral projections of perturbed selfadjoint operators”, Siberian Math. J., 41:3 (2000), 592–600 | DOI | MR
[46] D.M. Polyakov, “Spectral analysis of a fourth-order nonselfadjoint operator with nonsmooth coefficients”, Siberian Math. J., 56:1 (2015), 138–154 | DOI | MR | Zbl
[47] N.B. Uskova, “On the spectrum of some classes of differential operators”, Differ. Equ., 30:2 (1994), 328–330 | MR | Zbl
[48] D.M. Polyakov, “Spectral analysis of a fourth order differential operator with periodic and antiperiodic boundary conditions”, St. Petersburg Math. J., 27:5 (2016), 789–811 | DOI | MR | Zbl
[49] D.M. Polyakov, “On spectral properties of fourth order differential operator with periodic and semiperiodic boundary conditions”, Russian Math. (Izv. VUZ.), 59:5 (2015), 64–68 | DOI | MR | Zbl
[50] D.M. Polyakov, “Method of similar operators in spectral analysis of a fourth-order nonself-adjoint operator”, Differ. Equ., 51:3 (2015), 421–425 | DOI | MR | Zbl
[51] A.G. Baskakov, I.A. Krishtal, “On completeness of spectral subspace of linear relations and ordered pairs of linear operators”, J. Math. Anal. Appl., 407 (2013), 157–178 | DOI | MR | Zbl
[52] D.M. Polyakov, “Spectral properties of an even-order differential operator”, Differ. Equ., 52:8 (2016), 1098–1103 | DOI | MR | Zbl
[53] D.M. Polyakov, “Spectral properties of 1D Scrödinger operator”, Vestnik Voronezh. Gos. Univer. Phys. Math., 2 (2016), 146–152 | Zbl
[54] G.V. Garkavenko, N.B. Uskova, “Method of similar operators in research of spectral properties of difference operators with growthing potentials”, Siberian Electronic Mathematical Reports, 14 (2017), 673–689 | MR | Zbl
[55] G.V. Garkavenko, N.B. Uskova, “Spectral analysis of a class of difference operator with growthing potential”, Izvestiya Saratov Univ. (N.S.). Ser. Math. Mech. Inform., 16:4 (2016), 395–402 | DOI | MR | Zbl
[56] G.V. Garkavenko, N.B. Uskova, “The similar operators method in investigation of spectral properties of one class difference operators”, Vestnik Voronezh. Gos. Univer. Phys. Math., 3 (2016), 101–111 | Zbl
[57] G.V. Garkavenko, N.B. Uskova, A.R. Zgolich, “The similar operators method and spectral properties of two difference operator with order potential”, Belgorod State University. Sci. Bull. Math. Phys., 2016, no. 20(43), 42–49
[58] A.N. Shelkovoy, “Asymptotic behavior of the eigenvalues of a differential operator with non-local boundary conditions”, Belgorod State University. Sci. Bull. Math. Phys., 2016, no. 13(43), 72–80
[59] D.M. Polyakov, “A one-dimensional Schrödinger operator with square-integrable potential”, Siberian Math. J., 59:3 (2018), 470–485 | DOI | MR | Zbl
[60] I.N. Braeutigam, D.M. Polyakov, “On the asymptotics of eigenvalues of a fourth-order differential operator with matrix coefficients”, Differ. Equ., 54:4 (2018), 450–467 | DOI | MR | Zbl
[61] G.V. Garkavenko, A.R. Zgolich, N.B. Uskova, “Spectral analysis of a difference operator with a growing potential”, J. Phys. Conf. Series, 973 (2018) | DOI | MR
[62] G.V. Garkavenko, N.B. Uskova, “The theorem of the decomposition of linear operators and the asymptotic behaviour of the eigenvalues of difference operator with a growing potential”, J. Pure. Appl. Math., 18:1 (2018), 91–106 | MR
[63] N.B. Uskova, “A Pearcy-Shields problem”, Russian Math. (Izv. VUZ.), 41:10 (1997), 76–78 | MR | Zbl
[64] N.B. Uskova, “On the method of similar operators in Banach algebras”, Russian Math. (Izv. VUZ.), 49:3 (2005), 75–81 | MR | Zbl
[65] G.V. Garkavenko, “On diagonalization of certain classes of linear operators”, Russian Math. (Izv. VUZ.), 38:11 (2005), 11–16 | MR
[66] T.V. Azarnova, N.B. Uskova, “On similary transformation of operators”, Vestnik Voronezh. Gos. Univer. Phys. Math., 2 (2007), 121–126
[67] V.V. Katrakhov, S.M. Sitnik, “The transmutation method and boundary-value problem for singular elliptic equations”, SMFN, 64:2 (2018), 211–426 | MR
[68] N.B. Uskova, “Estimates for spectral expansions of eigenvectors for some classes of perturbed linear operators”, Differ. Equ., 33:4 (1997), 79–81 | MR
[69] N.B. Uskova, “On a result of R. Turner”, Math. Notes, 76:6 (2004), 844–854 | DOI | MR | Zbl
[70] M.A. Krasnoselskii and others, Solution of operator equations, Nauka, M., 1967 | MR