Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a128, author = {V. Gichev}, title = {The {Kostlan--Shub--Smale} random polynomials in the case of growing number of variables}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {217--228}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a128/} }
TY - JOUR AU - V. Gichev TI - The Kostlan--Shub--Smale random polynomials in the case of growing number of variables JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 217 EP - 228 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a128/ LA - en ID - SEMR_2019_16_a128 ER -
V. Gichev. The Kostlan--Shub--Smale random polynomials in the case of growing number of variables. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 217-228. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a128/
[1] Fyodorov, Y., Lerario, A., Lundberg E., “On the number of connected components of random algebraic hypersurfaces”, J. Geometry and Physics, 95 (2015), 1–20 | DOI | MR | Zbl
[2] Gichev V. M., “Metric properties in the mean of polynomials on compact isotropy irreducible homogeneous spaces”, Analysis and Math. Physics, 3:2 (2013), 119–144 | DOI | MR | Zbl
[3] V. Gichev, “Decomposition of the Kostlan-Shub-Smale model for random polynomials”, Contemporary Mathematics, 699, Amer. Math. Soc., Providence, RI, 2017, 103–120 | DOI | MR | Zbl
[4] Kostlan E., “On the distribution of roots of random polynomials”, The work of Smale in differential topology, From Topology to Computation: Proceedings of the Smalefest, Springer, 1993, 419–431 | DOI | MR | Zbl
[5] Kostlan E., “On the expected number of real roots of a system of random polynomial equations”, Foundations of computational mathematics, Proceedings of Smalefest 2000, World Scientific Publishing, 2002, 149–188 | DOI | MR | Zbl
[6] Shub M., Smale S., “Complexity of Bezout’s theorem II: volumes and probabilities”, Computational Algebraic Geometry, Progress in Mathematics, 109, eds. F. Eyssette, A. Galligo, Birkhäuser, 1993, 267–285 | MR | Zbl
[7] Stein E. M., Singular integrals and differentiability properties of functions, Princeton, 1970 | MR