Unique determination of~conformal type for~domains
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 692-708.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is the first part of a cycle of three articles, which is a survey devoted to the discussion of problems of the unique determination of conformal type for domains in Euclidean spaces. The main goal of the survey is to present a new apparently, very interesting and yet very difficult trend in the classical geometric topic of the unique determination of convex surfaces by their intrinsic metrics. This (the first) article of the cycle relies upon the author's talk "Unique Determination of Polyhedral Domains and $p$-Moduli  of Path Families" given at the International Conference “Metric Geometry of Surfaces and Polyhedra” (Moscow, August 2010) dedicated to the 100th anniversary of Prof. N. V. Efimov, and the article itself is an extended version of this talk.   Note that the author developed problems of the unique determination of conformal type for domains in Euclidean spaces in earlier papers. In the present article, we expose new results on the problem of the unique determination of conformal type for domains in $\mathbb R^n$. In particular, we show that a (generally speaking) nonconvex bounded polyhedral domain in $\mathbb R^n$ ($n \ge 4$) whose boundary is an $(n-1)$-dimensional connected manifold of class $C^0$ without boundary and is representable as a finite union of pairwise nonoverlapping $(n-1)$-dimensional cells is uniquely determined by the relative conformal moduli of its boundary condensers. Results on the unique determination (of polyhedral domains) of isometric type are also obtained. In contrast to the classical case, these results present a new approach in which the notion of the $p$-modulus of path families is used.
Keywords: p-modulus of path families, boundary condenser, quasiconformal and conformal mappings, isometric mapping
Mots-clés : unique determination.
@article{SEMR_2019_16_a125,
     author = {A. P. Kopylov},
     title = {Unique determination of~conformal type for~domains},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {692--708},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a125/}
}
TY  - JOUR
AU  - A. P. Kopylov
TI  - Unique determination of~conformal type for~domains
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 692
EP  - 708
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a125/
LA  - en
ID  - SEMR_2019_16_a125
ER  - 
%0 Journal Article
%A A. P. Kopylov
%T Unique determination of~conformal type for~domains
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 692-708
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a125/
%G en
%F SEMR_2019_16_a125
A. P. Kopylov. Unique determination of~conformal type for~domains. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 692-708. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a125/

[1] A.V. Pogorelov, Extrinsic Geometry of Convex Surfaces, AMS, Providence, 1973 | MR | Zbl

[2] A.P. Kopylov, “Unique determination of convex polyhedral domains by relative conformal moduli of boundary condensers”, Dokl. Math., 74 (2006), 637–639 | DOI | MR | Zbl

[3] A.P. Kopylov, “On the unique determination of domains in Euclidean spaces”, J. of Math. Sciences, 153:6 (2008), 869–898 | DOI | MR | Zbl

[4] A.P. Kopylov, “Unique determination of domains”, Differential Geometry and its Applications, Proceedings of International Conference DGA 2007 in Honour of L. Euler (Olomouc, 2007), World Scientific, Singapore, 2008, 157–169 | DOI | MR | Zbl

[5] L. Ahlfors, A. Beurling, “Conformal invariants and function-theoretic null-sets”, Acta Math., 83 (1950), 101–129 | DOI | MR | Zbl

[6] J. Väisälä, Lectures on $n$-Dimensional Quasiconformal Mappings, Berlin–Heidelberg–New York, Springer, 1973 | MR

[7] F.W. Gehring, “Rings and quasiconformal mappings in space”, Trans. Am. Math. Soc., 103 (1962), 353–393 | DOI | MR | Zbl

[8] Yu.G. Reshetnyak, Stability Theorems in Geometry and Analysis, Kluwer Academic Publishers, Dordrecht, 1994 | MR | Zbl

[9] A.P. Kopylov, “On unique determination of conformal type for domains in Euclidean spaces”, Lobachevskii Journal of Mathematics, 38:2 (2017), 280–289 | DOI | MR | Zbl

[10] H. Whitney, Geometric Integration Theory, Princeton Mathematical Series, Princeton University Press, Princeton, N.J.; Oxford University Press, London, 1957 | MR | Zbl

[11] J. Väisälä, “On quasiconformal mappings in space”, Ann. Acad. Sci. Fenn. AI, 298 (1961), 1–36 | MR | Zbl

[12] F.W. Gehring, “Symmetrization of rings in space”, Trans. Amer. Math. Soc., 101 (1961), 499–519 | DOI | MR | Zbl

[13] F.W. Gehring, “A remark on the moduli of rings”, Comment. Math. Helv., 36 (1961), 42–46 | DOI | MR | Zbl

[14] F.W. Gehring, J. Väisälä, “The coefficients of quasiconformality of domains in space”, Acta Mathematica, 114 (1965), 1–70 | DOI | MR | Zbl

[15] V.A. Shlyk, “The equality between $p$-capacity and $p$-modulus”, Sib. Math. J., 34:6 (1993), 1196–1200 | DOI | MR | Zbl

[16] F.W. Gehring, “Lipschitz mappings and the $p$-capacity of rings in $n$-space”, Annals of Mathematics Studies, 66 (1971), 175–193 | MR | Zbl

[17] A.P. Kopylov, “Uniqueness of polyhedral domains and $p$-moduli of path families”, Dokl. Math., 83 (2011), 321–323 | DOI | MR | Zbl

[18] A.P. Kopylov, “Erratum to: “Uniqueness of polyhedral domains and p-moduli of path families””, Dokl. Math., 84 (2011), 765 | DOI | MR | Zbl

[19] A.P. Kopylov, Unique determination of polyhedral domains in $\mathbb R^n$ ($n \ge 4$) and $p$-moduli of path families, 2014, arXiv: 1402.4273v3 [math.MG] | MR