Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a125, author = {A. P. Kopylov}, title = {Unique determination of~conformal type for~domains}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {692--708}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a125/} }
A. P. Kopylov. Unique determination of~conformal type for~domains. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 692-708. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a125/
[1] A.V. Pogorelov, Extrinsic Geometry of Convex Surfaces, AMS, Providence, 1973 | MR | Zbl
[2] A.P. Kopylov, “Unique determination of convex polyhedral domains by relative conformal moduli of boundary condensers”, Dokl. Math., 74 (2006), 637–639 | DOI | MR | Zbl
[3] A.P. Kopylov, “On the unique determination of domains in Euclidean spaces”, J. of Math. Sciences, 153:6 (2008), 869–898 | DOI | MR | Zbl
[4] A.P. Kopylov, “Unique determination of domains”, Differential Geometry and its Applications, Proceedings of International Conference DGA 2007 in Honour of L. Euler (Olomouc, 2007), World Scientific, Singapore, 2008, 157–169 | DOI | MR | Zbl
[5] L. Ahlfors, A. Beurling, “Conformal invariants and function-theoretic null-sets”, Acta Math., 83 (1950), 101–129 | DOI | MR | Zbl
[6] J. Väisälä, Lectures on $n$-Dimensional Quasiconformal Mappings, Berlin–Heidelberg–New York, Springer, 1973 | MR
[7] F.W. Gehring, “Rings and quasiconformal mappings in space”, Trans. Am. Math. Soc., 103 (1962), 353–393 | DOI | MR | Zbl
[8] Yu.G. Reshetnyak, Stability Theorems in Geometry and Analysis, Kluwer Academic Publishers, Dordrecht, 1994 | MR | Zbl
[9] A.P. Kopylov, “On unique determination of conformal type for domains in Euclidean spaces”, Lobachevskii Journal of Mathematics, 38:2 (2017), 280–289 | DOI | MR | Zbl
[10] H. Whitney, Geometric Integration Theory, Princeton Mathematical Series, Princeton University Press, Princeton, N.J.; Oxford University Press, London, 1957 | MR | Zbl
[11] J. Väisälä, “On quasiconformal mappings in space”, Ann. Acad. Sci. Fenn. AI, 298 (1961), 1–36 | MR | Zbl
[12] F.W. Gehring, “Symmetrization of rings in space”, Trans. Amer. Math. Soc., 101 (1961), 499–519 | DOI | MR | Zbl
[13] F.W. Gehring, “A remark on the moduli of rings”, Comment. Math. Helv., 36 (1961), 42–46 | DOI | MR | Zbl
[14] F.W. Gehring, J. Väisälä, “The coefficients of quasiconformality of domains in space”, Acta Mathematica, 114 (1965), 1–70 | DOI | MR | Zbl
[15] V.A. Shlyk, “The equality between $p$-capacity and $p$-modulus”, Sib. Math. J., 34:6 (1993), 1196–1200 | DOI | MR | Zbl
[16] F.W. Gehring, “Lipschitz mappings and the $p$-capacity of rings in $n$-space”, Annals of Mathematics Studies, 66 (1971), 175–193 | MR | Zbl
[17] A.P. Kopylov, “Uniqueness of polyhedral domains and $p$-moduli of path families”, Dokl. Math., 83 (2011), 321–323 | DOI | MR | Zbl
[18] A.P. Kopylov, “Erratum to: “Uniqueness of polyhedral domains and p-moduli of path families””, Dokl. Math., 84 (2011), 765 | DOI | MR | Zbl
[19] A.P. Kopylov, Unique determination of polyhedral domains in $\mathbb R^n$ ($n \ge 4$) and $p$-moduli of path families, 2014, arXiv: 1402.4273v3 [math.MG] | MR