Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a120, author = {M. I. Ivanov and I. A. Kremer and Yu. M. Laevsky}, title = {On wells modeling in filtration problems}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1868--1884}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a120/} }
TY - JOUR AU - M. I. Ivanov AU - I. A. Kremer AU - Yu. M. Laevsky TI - On wells modeling in filtration problems JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1868 EP - 1884 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a120/ LA - ru ID - SEMR_2019_16_a120 ER -
M. I. Ivanov; I. A. Kremer; Yu. M. Laevsky. On wells modeling in filtration problems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1868-1884. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a120/
[1] V. B. Andreev, S. A. Kryakvina, “The source function of the difference Laplace operator”, USSR Computational Mathematics and Mathematical Physics, 12:2 (1972), 101–114 | DOI | MR
[2] K. Aziz, A. Settari, Petroleum Reservoir Simulation, Applied Science Publishers, 1979
[3] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 | MR | Zbl
[4] D. Cerroni, F. Laurino, P. Zunino, “Mathematical analysis, finite element approximation and numerical solvers for the interaction of 3D reservoirs with 1D wells”, International Journal on Geomathematics, 10:4 (2019), 1–27 | MR | Zbl
[5] G. Chavent, J. Jaffre, J. E. Roberts, “Generalized cell-centered finite volume methods: application to two-phase flow in porous media”, Computational Science for the 21st Century, Wiley, 1997, 231–241 | Zbl
[6] A.N. Chekalin, Chislennoe Reshenie Zadach Filtracii v Vodoneftyanyh Plastah, Kazan Univ. Publ., Kazan, 1982 (in Russian)
[7] Z. Chen, G. Huan, Y. Ma, Computational Methods for Multiphase Flows in Porous Media, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2006 | MR | Zbl
[8] Y. Ding, L. Jeannin, “New numerical schemes for nearwell modeling using flexible grid”, SPE Journal, 9:1 (2004), 109–121 | DOI
[9] M. Dotlic, D. Vidovic, B. Pokorni, M. Pusic, M. Dimkic, “Second-order accurate finite volume method for well-driven flows”, Journal of Computational Physics, 307:C (2016), 460–475 | DOI | MR | Zbl
[10] Y. Efendiev, J. Galvis, T. Y. Hou, “Generalized multiscale finite element methods (GMsFEM)”, Journal of computational physics, 251 (2013), 116–135 | DOI | MR | Zbl
[11] A. Elakkad, N. Guessous, A. Elkhalfi, “Combined mixed hybrid finite element and finite volume method for flow in porous media”, International Journal of Mathematics and Statistics, 7:W10 (2010), 24–31 | MR
[12] R.E. Ewing, J.E. Pasciak, R.D. Lazarov, P. S. Vassilevski, “Domain decomposition type iterative techniques for parabolic problems on locally refined grids”, SIAM J. Numer. Anal., 30:6 (1993), 1537–1557 | DOI | MR | Zbl
[13] R. E. Ewing, R. D. Lazarov, “Approximation of parabolic problems on grids locally refined in time and space”, Appl. Numerical Mathematics, 14 (1994), 199–211 | DOI | MR | Zbl
[14] M.P. Galanin, S.A. Lazareva, E. B. Savenkov, “Numerical investigation of the finite superelement method for the solution of the “well” problem for Laplace equation”, Keldysh Institute preprints, 2005, 079, 30 pp. | MR
[15] M.I. Ivanov, I.A. Kremer, Yu.M. Laevsky, “On the upwind scheme for solving to filtration problem”, Sib. Electronic Math. Reports, 16 (2019), 757–776 | MR | Zbl
[16] W. Kherijia, R. Massona, A. Moncorge, “Nearwell local space and time refinement in reservoir simulation”, Mathematics and Computers in Simulation, 118 (2015), 273–292 | DOI | MR
[17] A.N. Konovalov, Problems of Multiphase Fluid Filtration, World Scientific, Singapore, 1994 | MR | Zbl
[18] V. Kramarenko, K. Nikitin, Yu. Vassilevski, “A finite volume scheme with improved well modeling in subsurface flow simulation”, Computational Geosciences, 21:5 (2017), 1023–1033 | DOI | MR | Zbl
[19] Yu. M. Laevsky, “A problem with wells for the steady diffusion equation”, Numerical Analysis and Applications, 3:2 (2010), 101–117 | DOI
[20] K.D. Nikitin, “Nonlinear finite volume method for two-phase flows”, Matem. Model., 22:11 (2010), 131–147 (in Russian) | MR | Zbl
[21] D.W. Peaceman, Fundamentals of Numerical Reservoir Simulation, Elsevier, Amsterdam, 1977
[22] D.W. Peaceman, “Interpretation of wellblock pressures in numerical reservoir simulation”, SPE Journal, 18:3 (1978), 183–194
[23] D.W. Peaceman, “Interpretation of wellblock pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability”, SPE Journal, 23:3 (1983), 531–543
[24] P.A. Raviart, J. M. Thomas, “A mixed finite element method for 2-nd order elliptic problems”, Mathematical aspects of finite element methods, Lecture Notes in Mathematics, 606, 1977, 292–315 | DOI | MR | Zbl
[25] J.W. Sheldon, B. Zondek, W. T. Cardwell, “One-dimensional, incompressible, noncapillary, two-phase fluid flow in a porous medium”, Petroleum Transactions, 216, AIME, 1959, 290–296
[26] A.N. Tikhonov, A. A. Samarskii, Equations of Mathematical Physics, Dover Publications, New York, 1963 | MR
[27] K.V. Voronin, A.V. Grigoriev, Yu.M. Laevsky, “On an approach to the modeling of oil wells”, Numerical Analysis and Applications, 10:2 (2017), 120–128 | DOI | MR | Zbl
[28] C. Wolfsteiner, S.H. Lee, H. A. Tchelepi, “Well modeling in the multiscale finite volume method for subsurface flow simulation”, Multiscale Model. Simul., 5:3 (2006), 900–917 | DOI | MR | Zbl