On wells modeling in filtration problems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1868-1884.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to one of the approaches of wells modeling within numerical oil reservoir simulation. The approach can be consider as fictitious domain method at mixed finite element approximation, which is used for non-stationary filtration processes of two phase fluid in Bukley–Leverett problem. The numerical results are compared with the results for the problem with usual Neumann conditions at the wells boundaries.
Keywords: injection well, production well, filtration problem, single phase liquid, two phase liquid, flow velocity, pressure, mixed finite element method.
Mots-clés : saturation
@article{SEMR_2019_16_a120,
     author = {M. I. Ivanov and I. A. Kremer and Yu. M. Laevsky},
     title = {On wells modeling in filtration problems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1868--1884},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a120/}
}
TY  - JOUR
AU  - M. I. Ivanov
AU  - I. A. Kremer
AU  - Yu. M. Laevsky
TI  - On wells modeling in filtration problems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1868
EP  - 1884
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a120/
LA  - ru
ID  - SEMR_2019_16_a120
ER  - 
%0 Journal Article
%A M. I. Ivanov
%A I. A. Kremer
%A Yu. M. Laevsky
%T On wells modeling in filtration problems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1868-1884
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a120/
%G ru
%F SEMR_2019_16_a120
M. I. Ivanov; I. A. Kremer; Yu. M. Laevsky. On wells modeling in filtration problems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1868-1884. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a120/

[1] V. B. Andreev, S. A. Kryakvina, “The source function of the difference Laplace operator”, USSR Computational Mathematics and Mathematical Physics, 12:2 (1972), 101–114 | DOI | MR

[2] K. Aziz, A. Settari, Petroleum Reservoir Simulation, Applied Science Publishers, 1979

[3] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 | MR | Zbl

[4] D. Cerroni, F. Laurino, P. Zunino, “Mathematical analysis, finite element approximation and numerical solvers for the interaction of 3D reservoirs with 1D wells”, International Journal on Geomathematics, 10:4 (2019), 1–27 | MR | Zbl

[5] G. Chavent, J. Jaffre, J. E. Roberts, “Generalized cell-centered finite volume methods: application to two-phase flow in porous media”, Computational Science for the 21st Century, Wiley, 1997, 231–241 | Zbl

[6] A.N. Chekalin, Chislennoe Reshenie Zadach Filtracii v Vodoneftyanyh Plastah, Kazan Univ. Publ., Kazan, 1982 (in Russian)

[7] Z. Chen, G. Huan, Y. Ma, Computational Methods for Multiphase Flows in Porous Media, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2006 | MR | Zbl

[8] Y. Ding, L. Jeannin, “New numerical schemes for nearwell modeling using flexible grid”, SPE Journal, 9:1 (2004), 109–121 | DOI

[9] M. Dotlic, D. Vidovic, B. Pokorni, M. Pusic, M. Dimkic, “Second-order accurate finite volume method for well-driven flows”, Journal of Computational Physics, 307:C (2016), 460–475 | DOI | MR | Zbl

[10] Y. Efendiev, J. Galvis, T. Y. Hou, “Generalized multiscale finite element methods (GMsFEM)”, Journal of computational physics, 251 (2013), 116–135 | DOI | MR | Zbl

[11] A. Elakkad, N. Guessous, A. Elkhalfi, “Combined mixed hybrid finite element and finite volume method for flow in porous media”, International Journal of Mathematics and Statistics, 7:W10 (2010), 24–31 | MR

[12] R.E. Ewing, J.E. Pasciak, R.D. Lazarov, P. S. Vassilevski, “Domain decomposition type iterative techniques for parabolic problems on locally refined grids”, SIAM J. Numer. Anal., 30:6 (1993), 1537–1557 | DOI | MR | Zbl

[13] R. E. Ewing, R. D. Lazarov, “Approximation of parabolic problems on grids locally refined in time and space”, Appl. Numerical Mathematics, 14 (1994), 199–211 | DOI | MR | Zbl

[14] M.P. Galanin, S.A. Lazareva, E. B. Savenkov, “Numerical investigation of the finite superelement method for the solution of the “well” problem for Laplace equation”, Keldysh Institute preprints, 2005, 079, 30 pp. | MR

[15] M.I. Ivanov, I.A. Kremer, Yu.M. Laevsky, “On the upwind scheme for solving to filtration problem”, Sib. Electronic Math. Reports, 16 (2019), 757–776 | MR | Zbl

[16] W. Kherijia, R. Massona, A. Moncorge, “Nearwell local space and time refinement in reservoir simulation”, Mathematics and Computers in Simulation, 118 (2015), 273–292 | DOI | MR

[17] A.N. Konovalov, Problems of Multiphase Fluid Filtration, World Scientific, Singapore, 1994 | MR | Zbl

[18] V. Kramarenko, K. Nikitin, Yu. Vassilevski, “A finite volume scheme with improved well modeling in subsurface flow simulation”, Computational Geosciences, 21:5 (2017), 1023–1033 | DOI | MR | Zbl

[19] Yu. M. Laevsky, “A problem with wells for the steady diffusion equation”, Numerical Analysis and Applications, 3:2 (2010), 101–117 | DOI

[20] K.D. Nikitin, “Nonlinear finite volume method for two-phase flows”, Matem. Model., 22:11 (2010), 131–147 (in Russian) | MR | Zbl

[21] D.W. Peaceman, Fundamentals of Numerical Reservoir Simulation, Elsevier, Amsterdam, 1977

[22] D.W. Peaceman, “Interpretation of wellblock pressures in numerical reservoir simulation”, SPE Journal, 18:3 (1978), 183–194

[23] D.W. Peaceman, “Interpretation of wellblock pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability”, SPE Journal, 23:3 (1983), 531–543

[24] P.A. Raviart, J. M. Thomas, “A mixed finite element method for 2-nd order elliptic problems”, Mathematical aspects of finite element methods, Lecture Notes in Mathematics, 606, 1977, 292–315 | DOI | MR | Zbl

[25] J.W. Sheldon, B. Zondek, W. T. Cardwell, “One-dimensional, incompressible, noncapillary, two-phase fluid flow in a porous medium”, Petroleum Transactions, 216, AIME, 1959, 290–296

[26] A.N. Tikhonov, A. A. Samarskii, Equations of Mathematical Physics, Dover Publications, New York, 1963 | MR

[27] K.V. Voronin, A.V. Grigoriev, Yu.M. Laevsky, “On an approach to the modeling of oil wells”, Numerical Analysis and Applications, 10:2 (2017), 120–128 | DOI | MR | Zbl

[28] C. Wolfsteiner, S.H. Lee, H. A. Tchelepi, “Well modeling in the multiscale finite volume method for subsurface flow simulation”, Multiscale Model. Simul., 5:3 (2006), 900–917 | DOI | MR | Zbl