Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a118, author = {T. V. Gorbova and V. G. Pimenov and S. I. Solodushkin}, title = {Numerical solving of partial differential equations with heredity and nonlinearity in the differential operator}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1587--1599}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a118/} }
TY - JOUR AU - T. V. Gorbova AU - V. G. Pimenov AU - S. I. Solodushkin TI - Numerical solving of partial differential equations with heredity and nonlinearity in the differential operator JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1587 EP - 1599 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a118/ LA - ru ID - SEMR_2019_16_a118 ER -
%0 Journal Article %A T. V. Gorbova %A V. G. Pimenov %A S. I. Solodushkin %T Numerical solving of partial differential equations with heredity and nonlinearity in the differential operator %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 1587-1599 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a118/ %G ru %F SEMR_2019_16_a118
T. V. Gorbova; V. G. Pimenov; S. I. Solodushkin. Numerical solving of partial differential equations with heredity and nonlinearity in the differential operator. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1587-1599. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a118/
[1] A.J. Arenas, G. Gonzalez-Parra, B. M. Caraballo, “A nonstandard finite difference scheme for a nonlinear Black-Scholes equation”, Mathematical and Computer Modelling, 57 (2013), 1663–1670 | DOI | MR | Zbl
[2] V.K. Srivastava, S. Kumar, M.K. Awasthi, B. Kumar Singh, “Two-dimensional time fractional-order biological population model and its analytical solution”, Egypt. J. Basic Appl. Sci., 1 (2014), 71–76 | DOI
[3] S. Kutluay, A.R. Bahadir, A. Ozdez, “Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods”, Journal of Computational and Applied Mathematics, 103 (1999), 251–261 | DOI | MR | Zbl
[4] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996 | MR | Zbl
[5] Kropielnicka K., “Convergence of Implicit Difference Methods for Parabolic Functional Differential Equations”, Int. Journal of Mat. Analysis, 1:5–8 (2007), 257–277 | MR | Zbl
[6] A.H. Bhrawy, M.A. Abdelkawy, F. Mallawi, “An accurate Chebyshev pseudospectral scheme for multi-dimensional parabolic problems with time delays”, Bound Value Probl., 103 (2015) | DOI | MR | Zbl
[7] A.A. Samarskii, Theory of Difference Schemes, Nauka, M., 1989 | MR
[8] V.G. Pimenov, “General Linear Methods for the Numerical Solution of Functional-Differential Equations”, Differential Equations, 37:1 (2001), 116–127 | DOI | MR | Zbl
[9] V.G. Pimenov, A.B. Lozhnikov, “Difference schemes for the numerical solution of the heat conduction equation with aftereffect”, Proceedings of the Steklov Institute of Mathematics, 275 (2011), 137–148 | DOI | MR | Zbl
[10] A. Lekomtsev, V. Pimenov, “Convergence of the scheme with weights for the numerical solution of a heat conduction equation with delay for the case of variable coefficient of heat conductivity”, Appl. Math. Comput., 256 (2015), 83–93 | MR | Zbl
[11] S.I. Solodushkin, I.F. Yumanova, R.H. De Staelen, “First order partial differential equations with time delay and retardation of a state variable”, Journal of Computational and Applied Mathematics, 289 (2015), 322–330 | DOI | MR | Zbl
[12] V.G. Pimenov, Difference methods for solving partial differential equations with heredity, Publishing House of the Ural University, Ekaterinburg, 2014
[13] A.V. Kim, V.G. Pimenov, i-Smooth analysis and numerical methods for solving functional-differential equations, Regular and chaotic dynamics, M.–Izhevsk, 2004
[14] Yu.S. Volkov, V.L. Miroshnichenko, “Norm estimates for the inverses of matrices of monotone type and totally positive matrices”, Siberian Mathematical Journal, 50:6 (2009), 982–987 | DOI | MR | Zbl