Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a116, author = {M. I. Ivanov and I. A. Kremer and Yu. M. Laevsky}, title = {On the streamline upwind scheme of solution to the filtration problem}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {757--776}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a116/} }
TY - JOUR AU - M. I. Ivanov AU - I. A. Kremer AU - Yu. M. Laevsky TI - On the streamline upwind scheme of solution to the filtration problem JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 757 EP - 776 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a116/ LA - ru ID - SEMR_2019_16_a116 ER -
%0 Journal Article %A M. I. Ivanov %A I. A. Kremer %A Yu. M. Laevsky %T On the streamline upwind scheme of solution to the filtration problem %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 757-776 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a116/ %G ru %F SEMR_2019_16_a116
M. I. Ivanov; I. A. Kremer; Yu. M. Laevsky. On the streamline upwind scheme of solution to the filtration problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 757-776. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a116/
[1] S.N. Antontsev, “On the solvability of boundary value problems for degenerate two-phase porous flow equations”, Dinamika Sploshnoy Sredy, 10 (1972), 28–53 (in Russian) | MR
[2] T.J. Arbogast, “The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow”, Nonlinear Anal., 19 (1992), 1009–1031 | DOI | MR | Zbl
[3] T.J. Arbogast, M. Wheeler, N. Zhang, “A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media”, SIAM J. Numer. Anal., 33:4 (1996), 1669–1687 | DOI | MR | Zbl
[4] K. Aziz, A. Settari, Petroleum Reservoir Simulation, Applied Science Publishers, 1979
[5] J. Bear, Dynamics of Fluids in Porous Media, Dover Publications, New York, 1988 | Zbl
[6] P. Bochev, R. B. Lehoucq, “On the finite element solution of the pure Neumann problem”, SIAM Review, 47:1 (2005), 50–66 | DOI | MR | Zbl
[7] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 | MR | Zbl
[8] A.N. Brooks, T. J. R. Hughes, “Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations”, Comput. Methods Appl. Mech. Eng., 32 (1982), 199–259 | DOI | MR | Zbl
[9] G. Chavent, J. Jaffre, Mathematical Models and Finite Elements for Reservoir Simulation, Elsevier, Amsterdam, 1986 | Zbl
[10] G. Chavent, J. Jaffre, J. E. Roberts, “Generalized cell-centered finite volume methods: application to two-phase flow in porous media”, Computational Science for the 21st Century, Wiley, 1997, 231–241 | Zbl
[11] Z. Chen, “Degenerate two-phase incompressible flow I: Existence, uniqueness and regularity of a weak solution”, J. Diff. Equations, 171:2 (2001), 203–232 | DOI | MR | Zbl
[12] Z. Chen, R. Ewing, “Mathematical analysis for reservoir models”, SIAM J. Math. Anal., 30 (1999), 431–453 | DOI | MR | Zbl
[13] Z. Chen, G. Huan, B. Li, “An improved IMPES method for two-phase flow in porous media”, Transport in Porous Media, 54:3 (2004), 361–376 | DOI | MR
[14] Z. Chen, G. Huan, Y. Ma, Computational Methods for Multiphase Flows in Porous Media, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2006 | MR | Zbl
[15] C.N. Dawson, H. Klie, M.F. Wheeler, C. S. Woodward, “A parallel, implicit, cell-centered method for two-phase flow with a preconditioned Newton-Krylov solver”, Comput. Geosci., 1:3–4 (1997), 215–249 | DOI | MR | Zbl
[16] J. Donea, A. Huerta, Finite Element Methods for Flow Problems, John Wiley Sons, Ltd., 2003
[17] L.J. Durlofsky, “A triangle based mixed finite element – finite volume technique for modeling two phase flow through porous media”, J. Comp. Physics, 105:2 (1993), 252–266 | DOI | Zbl
[18] A. Elakkad, N. Guessous, A. Elkhalfi, “Combined mixed hybrid finite element and finite volume method for flow in porous media”, International Journal of Mathematics and Statistics, 7:W10 (2010), 24–31 | MR
[19] Y. Epshteyn, B. Riviere, “Fully implicit discontinuous finite element methods for two-phase flow”, Appl. Numer. Math., 57:4 (2007), 383–401 | DOI | MR | Zbl
[20] V.M. Goloviznin, S. A. Karabasov, “Nonlinear correction of the Cabaret scheme”, Matem. Model., 10:12 (1998), 107–123 (in Russian) | MR
[21] V.M. Goloviznin, A. A. Samarskii, “Difference approximation of convective transfer with spatial splitting of the time derivative”, Matem. Model., 10:1 (1998), 86–100 (in Russian) | MR | Zbl
[22] T.J.R. Hughes, “A simple scheme for developing “upwind” finite elements”, Intern. J. Numer. Meths. Eng., 12 (1978), 1359–1365 | DOI | Zbl
[23] T.J.R. Hughes, M. Mallet, A. Mizukami, “A new finite element formulation for computational fluid dynamics: II. Beyond SUPG”, Comp. Methods Appl. Mech. Eng., 54 (1986), 341–355 | DOI | MR | Zbl
[24] A. Iserles, “Generalized leapfrog methods”, IMA J. Numer. Analys., 6:3 (1986), 381–392 | DOI | MR | Zbl
[25] R. Juanes, “A variational multiscale finite element method for multiphase flow in porous media”, Finite Elements in Analysis and Design, 41 (2005), 763–77 | DOI | MR
[26] W. Klieber, B. Riviere, “Adaptive simulations of two-phase flow by discontinuous Galerkin methods”, Comp. Methods in Applied Mech. and Eng., 196 (2006), 404–419 | DOI | MR | Zbl
[27] A.N. Konovalov, Problems of Multiphase Fluid Filtration, World Scientific, Singapore, 1994 | MR | Zbl
[28] S.N. Kružkov, S. M. Sukorjanskii, “Boundary value problems for systems of equations of two-phase porous flow type; statement of the problems, questions of solvability, justification of approximate methods”, Mathematics of the USSR-Sbornik, 33:1 (1977), 62–80 | DOI | MR | Zbl
[29] Yu.M. Laevsky, T. A. Kandryukova, “On approximation of discontinuous solutions to the Buckley-Leverett equation”, Numerical Analysis and Applications, 5:3 (2012), 222–230 | DOI | Zbl
[30] Yu.M. Laevsky, P.E. Popov, A. A. Kalitkin, “Simulation of the filtration of a two-phase fluid by a mixed finite element method”, Matem. Model., 22:3 (2010), 74–90 (in Russian) | MR | Zbl
[31] P. Lax, B. Wendroff, “Systems of conservation laws”, Comm. Pure Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl
[32] A. Michel, “A finite volume scheme for the simulation of two-phase incompressible flow in porous media”, SIAM J. Numer. Anal., 41 (2003), 1301–1317 | DOI | MR | Zbl
[33] K.D. Nikitin, “Nonlinear finite volume method for two-phase flows”, Matem. Model., 22:11 (2010), 131–147 (in Russian) | MR | Zbl
[34] D.W. Peaceman, Fundamentals of Numerical Reservoir Simulation, Elsevier, Amsterdam, 1977
[35] P.E. Popov, Mathematical Modeling of Filtration Processes of Two-Phase Incompressible Fluid on Parallel Computing Systems, PhD thesis, Novosibirsk, 2011 (in Russian)
[36] B. Riviere, M. F. Wheeler, “Discontinuous Galerkin methods for flow and transport problems in porous media”, Commun. Numer. Meth. Eng., 18 (2002), 63–68 | DOI | MR | Zbl
[37] P. A. Raviart, J. M. Thomas, “A mixed finite element method for 2-nd order elliptic problems. Mathematical aspects of finite element methods”, Lecture Notes in Mathematics, 606, 1977, 292–315 | DOI | MR | Zbl
[38] G. Scovazzi, M.F. Wheeler, A. Mikelic, S. Lee, “Analytical and variational numerical methods for unstable miscible displacement flows in porous media”, J. Comp. Physics, 335 (2017), 444–496 | DOI | MR | Zbl
[39] J. W. Sheldon, B. Zondek, W. T. Cardwell, “One-dimensional, incompressible, noncapillary, two-phase fluid flow in a porous medium”, Petroleum Transactions, AIME, 216 (1959), 290–296
[40] S. Sun, M. F. Wheeler, “Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media”, SIAM J. Numer. Anal., 43 (2005), 195–219 | DOI | MR | Zbl
[41] V.I. Vasilev, M.V. Vasileva, Yu.M. Laevsky, T. S. Timofeeva, “Numerical simulation of the two-phase fluid filtration in heterogeneous media”, Journal of Applied and Industrial Mathematics, 11:2 (2017), 289–295 | DOI | MR