On the streamline upwind scheme of solution to the filtration problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 757-776.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to one of the approaches in the numerical simulation of filtration processes of a two-phase incompressible fluid. Bukley – Leverett problem is considered with solutions of a shock wave type. Within the mixed finite element method upwind algorithm for solution to equation for saturation is proposed, which gives solutions without numerical oscillations at the discontinuity. Special attention is paid to a new approach to solving the degenerate Neumann problem in a mixed formulation for the pressure and total flow velocity. The work is accompanied by an illustration of the results of numerical experiments for 3D problem.
Keywords: immiscible fluid flow, two-phase fluid, injection well, production well, mixed finite element method, upwind scheme.
Mots-clés : filtration
@article{SEMR_2019_16_a116,
     author = {M. I. Ivanov and I. A. Kremer and Yu. M. Laevsky},
     title = {On the streamline upwind scheme of solution to the filtration problem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {757--776},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a116/}
}
TY  - JOUR
AU  - M. I. Ivanov
AU  - I. A. Kremer
AU  - Yu. M. Laevsky
TI  - On the streamline upwind scheme of solution to the filtration problem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 757
EP  - 776
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a116/
LA  - ru
ID  - SEMR_2019_16_a116
ER  - 
%0 Journal Article
%A M. I. Ivanov
%A I. A. Kremer
%A Yu. M. Laevsky
%T On the streamline upwind scheme of solution to the filtration problem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 757-776
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a116/
%G ru
%F SEMR_2019_16_a116
M. I. Ivanov; I. A. Kremer; Yu. M. Laevsky. On the streamline upwind scheme of solution to the filtration problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 757-776. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a116/

[1] S.N. Antontsev, “On the solvability of boundary value problems for degenerate two-phase porous flow equations”, Dinamika Sploshnoy Sredy, 10 (1972), 28–53 (in Russian) | MR

[2] T.J. Arbogast, “The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow”, Nonlinear Anal., 19 (1992), 1009–1031 | DOI | MR | Zbl

[3] T.J. Arbogast, M. Wheeler, N. Zhang, “A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media”, SIAM J. Numer. Anal., 33:4 (1996), 1669–1687 | DOI | MR | Zbl

[4] K. Aziz, A. Settari, Petroleum Reservoir Simulation, Applied Science Publishers, 1979

[5] J. Bear, Dynamics of Fluids in Porous Media, Dover Publications, New York, 1988 | Zbl

[6] P. Bochev, R. B. Lehoucq, “On the finite element solution of the pure Neumann problem”, SIAM Review, 47:1 (2005), 50–66 | DOI | MR | Zbl

[7] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 | MR | Zbl

[8] A.N. Brooks, T. J. R. Hughes, “Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations”, Comput. Methods Appl. Mech. Eng., 32 (1982), 199–259 | DOI | MR | Zbl

[9] G. Chavent, J. Jaffre, Mathematical Models and Finite Elements for Reservoir Simulation, Elsevier, Amsterdam, 1986 | Zbl

[10] G. Chavent, J. Jaffre, J. E. Roberts, “Generalized cell-centered finite volume methods: application to two-phase flow in porous media”, Computational Science for the 21st Century, Wiley, 1997, 231–241 | Zbl

[11] Z. Chen, “Degenerate two-phase incompressible flow I: Existence, uniqueness and regularity of a weak solution”, J. Diff. Equations, 171:2 (2001), 203–232 | DOI | MR | Zbl

[12] Z. Chen, R. Ewing, “Mathematical analysis for reservoir models”, SIAM J. Math. Anal., 30 (1999), 431–453 | DOI | MR | Zbl

[13] Z. Chen, G. Huan, B. Li, “An improved IMPES method for two-phase flow in porous media”, Transport in Porous Media, 54:3 (2004), 361–376 | DOI | MR

[14] Z. Chen, G. Huan, Y. Ma, Computational Methods for Multiphase Flows in Porous Media, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2006 | MR | Zbl

[15] C.N. Dawson, H. Klie, M.F. Wheeler, C. S. Woodward, “A parallel, implicit, cell-centered method for two-phase flow with a preconditioned Newton-Krylov solver”, Comput. Geosci., 1:3–4 (1997), 215–249 | DOI | MR | Zbl

[16] J. Donea, A. Huerta, Finite Element Methods for Flow Problems, John Wiley Sons, Ltd., 2003

[17] L.J. Durlofsky, “A triangle based mixed finite element – finite volume technique for modeling two phase flow through porous media”, J. Comp. Physics, 105:2 (1993), 252–266 | DOI | Zbl

[18] A. Elakkad, N. Guessous, A. Elkhalfi, “Combined mixed hybrid finite element and finite volume method for flow in porous media”, International Journal of Mathematics and Statistics, 7:W10 (2010), 24–31 | MR

[19] Y. Epshteyn, B. Riviere, “Fully implicit discontinuous finite element methods for two-phase flow”, Appl. Numer. Math., 57:4 (2007), 383–401 | DOI | MR | Zbl

[20] V.M. Goloviznin, S. A. Karabasov, “Nonlinear correction of the Cabaret scheme”, Matem. Model., 10:12 (1998), 107–123 (in Russian) | MR

[21] V.M. Goloviznin, A. A. Samarskii, “Difference approximation of convective transfer with spatial splitting of the time derivative”, Matem. Model., 10:1 (1998), 86–100 (in Russian) | MR | Zbl

[22] T.J.R. Hughes, “A simple scheme for developing “upwind” finite elements”, Intern. J. Numer. Meths. Eng., 12 (1978), 1359–1365 | DOI | Zbl

[23] T.J.R. Hughes, M. Mallet, A. Mizukami, “A new finite element formulation for computational fluid dynamics: II. Beyond SUPG”, Comp. Methods Appl. Mech. Eng., 54 (1986), 341–355 | DOI | MR | Zbl

[24] A. Iserles, “Generalized leapfrog methods”, IMA J. Numer. Analys., 6:3 (1986), 381–392 | DOI | MR | Zbl

[25] R. Juanes, “A variational multiscale finite element method for multiphase flow in porous media”, Finite Elements in Analysis and Design, 41 (2005), 763–77 | DOI | MR

[26] W. Klieber, B. Riviere, “Adaptive simulations of two-phase flow by discontinuous Galerkin methods”, Comp. Methods in Applied Mech. and Eng., 196 (2006), 404–419 | DOI | MR | Zbl

[27] A.N. Konovalov, Problems of Multiphase Fluid Filtration, World Scientific, Singapore, 1994 | MR | Zbl

[28] S.N. Kružkov, S. M. Sukorjanskii, “Boundary value problems for systems of equations of two-phase porous flow type; statement of the problems, questions of solvability, justification of approximate methods”, Mathematics of the USSR-Sbornik, 33:1 (1977), 62–80 | DOI | MR | Zbl

[29] Yu.M. Laevsky, T. A. Kandryukova, “On approximation of discontinuous solutions to the Buckley-Leverett equation”, Numerical Analysis and Applications, 5:3 (2012), 222–230 | DOI | Zbl

[30] Yu.M. Laevsky, P.E. Popov, A. A. Kalitkin, “Simulation of the filtration of a two-phase fluid by a mixed finite element method”, Matem. Model., 22:3 (2010), 74–90 (in Russian) | MR | Zbl

[31] P. Lax, B. Wendroff, “Systems of conservation laws”, Comm. Pure Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl

[32] A. Michel, “A finite volume scheme for the simulation of two-phase incompressible flow in porous media”, SIAM J. Numer. Anal., 41 (2003), 1301–1317 | DOI | MR | Zbl

[33] K.D. Nikitin, “Nonlinear finite volume method for two-phase flows”, Matem. Model., 22:11 (2010), 131–147 (in Russian) | MR | Zbl

[34] D.W. Peaceman, Fundamentals of Numerical Reservoir Simulation, Elsevier, Amsterdam, 1977

[35] P.E. Popov, Mathematical Modeling of Filtration Processes of Two-Phase Incompressible Fluid on Parallel Computing Systems, PhD thesis, Novosibirsk, 2011 (in Russian)

[36] B. Riviere, M. F. Wheeler, “Discontinuous Galerkin methods for flow and transport problems in porous media”, Commun. Numer. Meth. Eng., 18 (2002), 63–68 | DOI | MR | Zbl

[37] P. A. Raviart, J. M. Thomas, “A mixed finite element method for 2-nd order elliptic problems. Mathematical aspects of finite element methods”, Lecture Notes in Mathematics, 606, 1977, 292–315 | DOI | MR | Zbl

[38] G. Scovazzi, M.F. Wheeler, A. Mikelic, S. Lee, “Analytical and variational numerical methods for unstable miscible displacement flows in porous media”, J. Comp. Physics, 335 (2017), 444–496 | DOI | MR | Zbl

[39] J. W. Sheldon, B. Zondek, W. T. Cardwell, “One-dimensional, incompressible, noncapillary, two-phase fluid flow in a porous medium”, Petroleum Transactions, AIME, 216 (1959), 290–296

[40] S. Sun, M. F. Wheeler, “Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media”, SIAM J. Numer. Anal., 43 (2005), 195–219 | DOI | MR | Zbl

[41] V.I. Vasilev, M.V. Vasileva, Yu.M. Laevsky, T. S. Timofeeva, “Numerical simulation of the two-phase fluid filtration in heterogeneous media”, Journal of Applied and Industrial Mathematics, 11:2 (2017), 289–295 | DOI | MR