Simoulation of the seismic wave propagation in porous media described by three elastic parameters
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 591-599.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm based on the spectral-difference method for numerical solution of the dynamic problem for porous media is proposed. We consider a linear two-dimensional problem in the form of dynamic equations in terms of displacement components described by three elastic parameters. The governing equations are based on conservation laws and consistent with the thermodynamics conditions. The medium is assumed to be isotropic and two-dimensional-inhomogeneous with respect to the spatial coordinates. To numerically solve the problem, we propose a method based on the joint use of the Laguerre integral transformation with respect to time and the finite difference approximation with respect to spatial coordinates. A description of the numerical implementation of the proposed method is given and its features are analyzed in the calculations. The efficiency of applying the Laguerre transformation and its difference from the Fourier transform for solving the direct dynamic seismic problems is discussed. Numerical results of the simulation of the seismic wave propagation fields for the test medium model are presented.
Keywords: porous media, wave field, numerical modeling, difference scheme.
Mots-clés : Laguerre transform
@article{SEMR_2019_16_a115,
     author = {Kh. Kh. Imomnazarov and A. A. Mikhailov and T. T. Rakhmonov},
     title = {Simoulation of the seismic wave propagation in porous media described by three elastic parameters},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {591--599},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a115/}
}
TY  - JOUR
AU  - Kh. Kh. Imomnazarov
AU  - A. A. Mikhailov
AU  - T. T. Rakhmonov
TI  - Simoulation of the seismic wave propagation in porous media described by three elastic parameters
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 591
EP  - 599
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a115/
LA  - en
ID  - SEMR_2019_16_a115
ER  - 
%0 Journal Article
%A Kh. Kh. Imomnazarov
%A A. A. Mikhailov
%A T. T. Rakhmonov
%T Simoulation of the seismic wave propagation in porous media described by three elastic parameters
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 591-599
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a115/
%G en
%F SEMR_2019_16_a115
Kh. Kh. Imomnazarov; A. A. Mikhailov; T. T. Rakhmonov. Simoulation of the seismic wave propagation in porous media described by three elastic parameters. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 591-599. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a115/

[1] Ya.I. Frenkel, “On the theory of seismic and seismoelectric phenomena in a moist soil”, J. Phys. USSR, 8 (1944), 230–241 | MR

[2] M.A. Biot, “Theory of propagation of elastic waves in fluid-saturated porous solid I. low-frequincy range”, The Journal of the Acoustical Society of America, 28 (1956), 168–178 | DOI | MR

[3] V.N. Dorovsky, “Continuum Theory of Filtration”, Geology and Geophysics, 7 (1989), 39–45 (in Russian)

[4] V.N. Dorovsky, Yu.V. Perepechko, E.I. Romensky, “Wave processes in saturated porous elastically deformed media”, Combustion, Explosion and Shock Waves, 1 (1993), 93–103 | DOI

[5] A.M. Blokhin, V.N. Dorovsky, Mathematical modelling in the theory of multivelocity continuum, Nova Science, New York, 1995 | MR

[6] O.N. Soboleva, E.P. Kurochkina, “Flow through Anisotropic Porous Medium with Multiscale Log-Normal Conductivity”, Journal of Porous Media, 13:2 (2010), 171–182 | DOI

[7] O.N. Soboleva, “Modeling of Propagation of Antiplane Acoustic Waves in Multiscale Media with Lognormal Distribution of Parameters”, Journal of computational acoustics, 25 (2017), 6–14 | DOI | MR

[8] G.V. Konyukh, B.G. Mikhailenko, “Application of integral Laguerre transformation for solving dynamic seismic problem”, Bull. Of the Novosibirsk Computing Center. Ser. Mathematical Modeling in Geophysics, 1998, no. 4, 79–91 | Zbl

[9] B.G. Mikhailenko, “Spectral Laguerre method for the approximate solution of time dependent problems”, Applied Mathematics Letters, 12 (1999), 105–110 | DOI | MR | Zbl

[10] B.G. Mikhailenko, A.A. Mikhailov, G.V. Reshetova, “Numerical modeling of transient seismic fields in viscoelastic media based on the Laguerre spectral method”, Pure apll. geophys., 160 (2003), 1207–1224 | DOI

[11] B.G. Mikhailenko, A.A. Mikhailov, G.V. Reshetova, “Numerical viscoelastic modeling by the spectral Laguerre method”, Geophysical Prospecting, 51 (2003), 37–48 | DOI | MR

[12] Kh. Kh. Imomnazarov, “Concentrated force in a porous half-space”, Bulletin of the Novosibirsk Computing Center. Ser. Mathematical Modeling in Geophysics, 4 (1998), 75–77 | Zbl

[13] Kh.Kh. Imomnazarov, N.M. Zhabborov, Some initial boundary value problems of the mechanics of two-velocity media, Izd-vo NUUz im. Mirzo Ulugbek, 2012 (in Russian)

[14] Kh.Kh. Imomnazarov, “A Mathematical Model for the Movement of a Conducting Liquid Through a Conducting Porous Medium: I. Excitation of Oscilations of the Magnetic Field by the Surface Rayleigh Wave”, Mathl. Comput. Modelling, 24:1 (1996), 79–84 | DOI | MR | Zbl

[15] Kh.Kh. Imomnazarov, “Some Remarks on the Biot System of Equations”, Doklady RAS, 373:4 (2000), 536–537 (in Russian) | Zbl

[16] Kh.Kh. Imomnazarov, “Some Remarks on the Biot System of Equations Describing Wave Propagation in a Porous Medium”, Appl. Math. Lett., 13:3 (2000), 33–35 | DOI | MR | Zbl

[17] S.K. Godunov, Equations of mathematical physics, Nauka, M., 1979 (in Russian) | MR