Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a114, author = {Sergey Sevastyanov}, title = {Some positive news on the proportionate open shop problem}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {406--426}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a114/} }
Sergey Sevastyanov. Some positive news on the proportionate open shop problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 406-426. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a114/
[1] Bárány I., Fiala T., “Nearly optimum solution of multimachine scheduling problems”, Szigma, 15:3 (1982), 177–191 (in Hungarian) | MR | Zbl
[2] I. Chernykh, S. Sevastyanov, “On the abnormality in open shop scheduling”, 17th Baikal International Triannual School-Seminar “Methods of Optimization and their Applications” (July 31–August 6, 2017, Maksimikha, Buryatia), 2017 http://isem.irk.ru/conferences/mopt2017/Abstracts/BAIKAL_2017_paper_95.pdf | Zbl
[3] I.G. Drobouchevitch, V.A. Strusevich, “A polynomial algorithm for the three-machine open shop with a bottleneck machine”, Ann. Oper. Res., 92 (1999), 185–214 | DOI | MR
[4] T. Fiala, “An Algorithm for the Open-Shop Problem”, Mathematics of Operations Research, 8:1 (1983), 100–109 | DOI | MR | Zbl
[5] T. Gonzalez, S. Sahni, “Open shop scheduling to minimize finish time”, J. Assoc. Comput. Mach., 23:4 (1976), 665–679 | DOI | MR | Zbl
[6] Kononov A., Sevastianov S., Tchernykh I., “When difference in machine loads leads to efficient scheduling in open shops”, Annals of Operations Research, 92 (1999), 211–239 | DOI | MR | Zbl
[7] Koulamas C., Kyparisis G. J., “The Three-Machine Proportionate Open Shop and Mixed Shop Minimum Makespan Problems”, European Journal of Operational Research, 243:1 (2015), 70–74 | DOI | MR | Zbl
[8] G.J. Kyparisis, C. Koulamas, “Open shop scheduling with maximal machines”, Discrete Applied Mathematics, 78 (1997), 175–187 | DOI | MR | Zbl
[9] C.Y. Liu, R.L. Bulfin, “Scheduling ordered open shops”, Computers and Operations Research, 14 (1987), 257–264 | DOI | MR | Zbl
[10] M.E. Matta, S.E. Elmaghraby, “Polynomial time algorithms for two special classes of the proportionate multiprocessor open shop”, European Journal of Operational Research, 201:3 (2010), 720–728 | DOI | MR | Zbl
[11] B. Naderi, M. Zandieh, M. Yazdani, “Polynomial time approximation algorithms for proportionate open-shop scheduling”, International Transactions in Operational Research, 21:6 (2014), 1031–1044 | DOI | MR | Zbl
[12] S.V. Sevastyanov, “On the Compact Vector Summation”, Diskretnaya Matematika, 3:3 (1991), 66–72 (in Russian) | MR | Zbl
[13] S.V. Sevast'yanov, “A polynomial-time open-shop problem with an arbitrary number of machines”, Cybernetics and Systems Analysis, 28:6 (1992), 918–933 | DOI | MR | Zbl
[14] S.V. Sevastyanov, “Vector summation in Banach space and polynomial algorithms for flow shops and open shops”, Mathematics of Operations Research, 20:1 (1995), 90–103 | DOI | MR | Zbl
[15] Sevastianov S., “Nonstrict vector summation in multi-operation scheduling”, Annals of Operations Research, 83 (1998), 179–211 | DOI | MR | Zbl
[16] S.V. Sevastianov, I.D. Tchernykh, “Computer-Aided Way to Prove Theorems in Scheduling”, Algorithms - ESA'98, 6th Annual European Symposium, Proceedings (Venice, Italy, August 1998), Lecture Notes in Computer Science, 1461, eds. Bilardi, a.o., Springer-Verlag, 1998, 502–513 | DOI | MR | Zbl
[17] S.V. Sevastianov, G.J. Woeginger, “Makespan minimization in open shops: a polynomial time approximation scheme”, Mathematical Programming, 82:1–2 (1998), 191–198 | DOI | MR | Zbl
[18] Sevastianov S. V., Woeginger G. J., “Linear time approximation scheme for the multiprocessor open shop problem”, Discrete Applide Mathematics, 114 (2001), 273–288 | DOI | MR | Zbl