Mutually touching infinite cylinders in the 3D world of lines
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 96-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently we gave arguments that only two unique topological-ly different configurations of 7 equal all mutually touching round cylinders (the configurations being mirror reflections of each other) are possible in 3D, although a whole world of configurations is possible already for round cylinders of arbitrary radii. It was found that as many as 9 round cylinders (all mutually touching) are possible in 3D while the upper bound for arbitrary cylinders was estimated to be not more than 14 under plausible arguments. Now by using the chirality and Ring matrices that we introduced earlier for the topological classification of line configurations, we have given arguments that the maximal number of mutually touching straight infinite cylinders of arbitrary cross-section (provided that its boundary is a smooth curve) in 3D cannot exceed 10. We generated numerically several configurations of 10 cylinders, restricting ourselves with elliptic cylinders. Configurations of 8 and 9 equal elliptic cylinders (all in mutually touching) are generated numerically as well. A possibility and restriction of continuous transformations from elliptic into round cylinder configurations are discussed. Some curious results concerning the properties of the chiral matrix (which coincides with Seidel's adjacency matrix important for the Graph theory) are presented.
Keywords: mutual touching, infinite cylinders, ultimate configurations, topology.
@article{SEMR_2019_16_a112,
     author = {P. V. Pikhitsa and S. Pikhitsa},
     title = {Mutually touching infinite cylinders in the {3D} world of lines},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {96--120},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a112/}
}
TY  - JOUR
AU  - P. V. Pikhitsa
AU  - S. Pikhitsa
TI  - Mutually touching infinite cylinders in the 3D world of lines
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 96
EP  - 120
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a112/
LA  - en
ID  - SEMR_2019_16_a112
ER  - 
%0 Journal Article
%A P. V. Pikhitsa
%A S. Pikhitsa
%T Mutually touching infinite cylinders in the 3D world of lines
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 96-120
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a112/
%G en
%F SEMR_2019_16_a112
P. V. Pikhitsa; S. Pikhitsa. Mutually touching infinite cylinders in the 3D world of lines. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 96-120. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a112/

[1] P.V. Pikhitsa, M. Choi, H.-J. Kim, S.-H. Ahn, “Auxetic lattice of multipods”, Phys stat solidi b, 246 (2009), 2098–2101 | DOI

[2] P.V. Pikhitsa, M. Choi, Seven, eight, and nine mutually touching infinitely long straight round cylinders: entanglement in Euclidean space, 2014, 18 pp., arXiv: 1312.6207

[3] P.V. Pikhitsa, S. Pikhitsa, “Symmetry, topology and the maximum number of mutually pairwise-touching infinite cylinders: configuration classification”, R. Soc. Open Sci., 4:1 (2017), 160729 | DOI | MR

[4] S. Bozoki, T.-L. Lee, L. Ronyai, “Seven mutually touching infinite cylinders”, Computational Geometry, 48:2 (2015), 87–93 | DOI | MR | Zbl

[5] P.V. Pikhitsa, “Regular network of contacting cylinders with implications for materials with negative Poisson ratios”, Phys. Rev. Lett., 93 (2004), 015505, 4 pp. | DOI

[6] T. Muir, Theory of determinants, v. 4, Macmillan and Co., London, 1923 | Zbl

[7] R. F. Scott, A treatise on the theory of determinants, Univ. Press, Cambridge, 1880 | Zbl

[8] G. Greaves, J. H. Koolen, A. Munemasa, F. Szollos, “Equiangular lines in Euclidean spaces”, Journal of Combinatorial Theory, Series A, 138 (2016), 208–235 | DOI | MR | Zbl

[9] S. P. Radziszowski, “Small Ramsey Numbers”, Electronic Journal of Combinatorics, 2017, DS1.15 | MR