Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a112, author = {P. V. Pikhitsa and S. Pikhitsa}, title = {Mutually touching infinite cylinders in the {3D} world of lines}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {96--120}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a112/} }
TY - JOUR AU - P. V. Pikhitsa AU - S. Pikhitsa TI - Mutually touching infinite cylinders in the 3D world of lines JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 96 EP - 120 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a112/ LA - en ID - SEMR_2019_16_a112 ER -
P. V. Pikhitsa; S. Pikhitsa. Mutually touching infinite cylinders in the 3D world of lines. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 96-120. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a112/
[1] P.V. Pikhitsa, M. Choi, H.-J. Kim, S.-H. Ahn, “Auxetic lattice of multipods”, Phys stat solidi b, 246 (2009), 2098–2101 | DOI
[2] P.V. Pikhitsa, M. Choi, Seven, eight, and nine mutually touching infinitely long straight round cylinders: entanglement in Euclidean space, 2014, 18 pp., arXiv: 1312.6207
[3] P.V. Pikhitsa, S. Pikhitsa, “Symmetry, topology and the maximum number of mutually pairwise-touching infinite cylinders: configuration classification”, R. Soc. Open Sci., 4:1 (2017), 160729 | DOI | MR
[4] S. Bozoki, T.-L. Lee, L. Ronyai, “Seven mutually touching infinite cylinders”, Computational Geometry, 48:2 (2015), 87–93 | DOI | MR | Zbl
[5] P.V. Pikhitsa, “Regular network of contacting cylinders with implications for materials with negative Poisson ratios”, Phys. Rev. Lett., 93 (2004), 015505, 4 pp. | DOI
[6] T. Muir, Theory of determinants, v. 4, Macmillan and Co., London, 1923 | Zbl
[7] R. F. Scott, A treatise on the theory of determinants, Univ. Press, Cambridge, 1880 | Zbl
[8] G. Greaves, J. H. Koolen, A. Munemasa, F. Szollos, “Equiangular lines in Euclidean spaces”, Journal of Combinatorial Theory, Series A, 138 (2016), 208–235 | DOI | MR | Zbl
[9] S. P. Radziszowski, “Small Ramsey Numbers”, Electronic Journal of Combinatorics, 2017, DS1.15 | MR