Stability of three-parameter systems of two linear differential equations with delay. Part~I
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2019-2054.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of two linear autonomous differential equations with a limited delay and a term without delay is considered. Complete classification of all three-parameter systems is obtained. For every such system the stability criterion in analytic and geometric form is obtained.
Keywords: system of differential equations with delay, autonomous equations, asymptotic stability, stability domain, D-subdivision method.
@article{SEMR_2019_16_a109,
     author = {M. V. Mulyukov},
     title = {Stability of three-parameter systems of two linear differential equations with delay. {Part~I}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {2019--2054},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a109/}
}
TY  - JOUR
AU  - M. V. Mulyukov
TI  - Stability of three-parameter systems of two linear differential equations with delay. Part~I
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 2019
EP  - 2054
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a109/
LA  - ru
ID  - SEMR_2019_16_a109
ER  - 
%0 Journal Article
%A M. V. Mulyukov
%T Stability of three-parameter systems of two linear differential equations with delay. Part~I
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 2019-2054
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a109/
%G ru
%F SEMR_2019_16_a109
M. V. Mulyukov. Stability of three-parameter systems of two linear differential equations with delay. Part~I. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2019-2054. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a109/

[1] N.V. Azbelev, V.P. Maksimov, L.F. Rakhmatullina, Introduction to the Theory of Functional Differential Equations, World Federation Publishers Company, Atlanta, 1995 | MR | Zbl

[2] N.V. Azbelev, P.M. Simonov, Stability of Differential Equations with Aftereffect, Taylor Francis, London, 2003 | MR | Zbl

[3] N.V. Azbelev, P.M. Simonov, Russ. Math. (Iz. VUZ), 41:6 (1997), 1–14 | MR | Zbl

[4] A.A. Andronov, A.G. Mayer, “The simplest linear systems with delay”, Automation and Remote Control, 7:2-3 (1946), 95–106 | MR | Zbl

[5] J.J. Batzel, H.T. Tran, “Stability of the human respiratory control system”, J. Math. Biol., 41 (2000), 45–79 | DOI | MR | Zbl

[6] R. Bellman, K. L. Cooke, Differential-Difference Equations, Mir, M., 1967 (in Russian) | MR | Zbl

[7] K.L. Cooke , Z. Grossman, “Discrete delay, distributed delay and stability switches”, J. Math. Anal. Appl., 86:2 (1982), 592–627 | DOI | MR | Zbl

[8] K.L. Cooke, J. Turi, “Stability, instability in delay equations modeling human respiration”, J. Math. Biol., 32:6 (1994), 535–543 | DOI | MR | Zbl

[9] L.Je. Jel'sgol'c, S.B. Norkin, Introduction to the theory of differential equations with deviating argument, Nauka, M., 1971 (in Russian) | MR | Zbl

[10] J. Hale, Theory of Functional-Differential Equations, Mir, M., 1984 (in Russian) | MR | Zbl

[11] C.S. Hsu, S.J. Bhatt, “Stability charts for second-order dynamical systems with time lag”, J. Appl. Mech., 33:1 (1966), 113–118 | DOI | MR | Zbl

[12] C.S. Hsu, S.J. Bhatt, “Stability charts for second-order dynamical systems with time lag”, J. Appl. Mech., 33:1 (1966), 119–124 | DOI | MR | Zbl

[13] Ju.S. Kolesov, “Mathematical models of ecology”, Issledovanija po ustojchivosti i teorii kolebanij, JarGU, Jaroslavl', 1979, 3–40 | Zbl

[14] V.B. Kolmanovskii, V.R. Nosov, Stability and periodic modes of a controlled systems with aftereffect, Nauka, M., 1981 | MR

[15] E. Malakhovski, L. Mirkin, “On stability of second-order quasi-polynomials with a single delay”, Automatica, 42:6 (2006), 1041–1047 | DOI | MR | Zbl

[16] A. Martin, S. Ruan, “Predator-prey models with delay and prey harvesting”, J. Math. Biol., 43:3 (2001), 247–267 | DOI | MR | Zbl

[17] H. Matsunaga, “Stability switches in a system of linear differential equations with diagonal delay”, Appl. Math. Comput., 212:1 (2009), 145–152 | MR | Zbl

[18] H. Matsunaga, “Exact stability criteria for delay differential and difference equations”, Appl. Math. Lett., 20:2 (2007), 183–188 | DOI | MR | Zbl

[19] H. Matsunaga, “Stability regions for linear delay differential equations with four parameters”, Int. J. Qual. Theory Differ. Equ. Appl., 3:1-2 (2009), 99–107 | Zbl

[20] M.V. Mulyukov, “Stability of one-parameter systems of linear autonomous differential equations with bounded delay”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki, 23:123 (2018), 488–502 (in Russian) | MR

[21] M.V. Mulyukov, “On factorization of the characteristic quasipolynomial of a system of linear differential equations with delay”, Russ. Math. (Iz. VUZ), 57:9 (2013), 31–36 | DOI | MR | Zbl

[22] M.V. Mulyukov, “Stability of two-parameter systems of linear autonomous differential equations with bounded delay”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 51 (2018), 79–122 (in Russian) | DOI | MR | Zbl

[23] M.V. Mulyukov, “Asymptotic stability of two-parameter systems of delay differential equations”, Russ. Math. (Iz. VUZ), 58:6 (2014), 44–50 | DOI | MR | Zbl

[24] M.V. Mulyukov, “The stability of the linear autonomous differential equation with distributed and concentrated delay”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki – Tambov University Reports. Series: Natural and Technical Sciences, 20:5 (2015), 1325–1331 (in Russian)

[25] M.V. Mulyukov, “Stability of inverted pendulum with delayed feedback”, Applied Mathematics and Control Sciences, 2017:4 (2017), 73–87 (in Russian) | MR

[26] M.V. Mulyukov, “Asymptotic stability of the system of autonomous differential equations of delayed type with degenerate matrices”, Proceedings of $VII$ international conference «Modern methods of applied mathematics, control theory and computer technology» (Voronej, 2014), 268–270 (in Russian)

[27] M.V. Mulyukov, “On stability of three-parameter system of two autonomous linear delay differential equations”, Proceedings of international conference «stability and control processes» in memory of V.I. Zubov (scp) joined with 21st international workshop on beam dynamics and optimization (bdo) (Saint-Petersburg, 05–09 october 2015) | MR

[28] M.V. Mulyukov, “Stability of three-parameter systems of two linear differential equations with delay. Part II”, Siberian Electronic Mathematical Reports (to appear) (Russian)

[29] A.D. Myshkis, Linear Differential Equations with Delayed Argument, Nauka, M., 1972 (in Russian) | MR | Zbl

[30] Ju.I. Nejmark, “On the determination of the values of the parameters for which a system of automatic regulation is stable”, Automation and Remote Control, 9:3 (1948), 190–203 (in Russian) | MR

[31] Ju.I. Neimark, Stability of linearized systems (discrete and distributed), LKVVIA, L., 1949 (in Russian)

[32] Ju.I. Nejmark, Dynamic systems and controlled processes, Nauka, M., 1978 (in Russian) | MR | Zbl

[33] G. Stepan, Retarded dynamical systems: stability and characteristic functions, Longman Scientific Technical, New York, 1989 | MR | Zbl

[34] V.A. Trenogin, Functional analysis, Nauka, M., 1993 (in Russian) | MR | Zbl

[35] P. Wangersky, W. Cunningham, “Time lag in prey-predator population models”, Ecology, 38:1 (1957), 136–139 | DOI

[36] V.V. Zajcev, A.V. Karlov-mladshij, S.S. Telegin, “Predator-prey DV-model”, Vestn. SamGU – Estestvennonauchnaja serija, 6(72) (2009), 139–148 (in Russian)

[37] H. Zhao, Y. Lin, Y. Dai, “Stability and global Hopf bifurcation analysis on a ratio-dependent predator-prey model with two time delays”, Abstract and Applied Analysis, 2013 (2013), 321930 | MR | Zbl

[38] V.I. Zubov, “On the theory of linear stationary systems with lagging arguments”, Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 6(7), 86–95 | MR | Zbl