A regularity criterion to the 3D Boussinesq equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1795-1804

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the regularity criterion for the weak solutions to the 3D Boussinesq equations in terms of the partial derivatives in Besov spaces. It is proved that the weak solution $(u,\theta )$ becomes regular provided that $ (\nabla _{h}u,\nabla _{h}\theta )\in L^{\frac{8}{3}}(0,T;\overset{\cdot }{B} _{\infty ,\infty }^{-1}(\mathbb{R}^{3}))$. Our results improve and extend the well-known results of Fang-Qian [13] for the Navier–Stokes equations.
Keywords: regularity criterion, weak solutions
Mots-clés : Boussinesq equations, Besov space.
@article{SEMR_2019_16_a107,
     author = {A. M. Alghamdi and I. Ben Omrane and S. Gala and M. A. Ragusa},
     title = {A regularity criterion to the {3D} {Boussinesq} equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1795--1804},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a107/}
}
TY  - JOUR
AU  - A. M. Alghamdi
AU  - I. Ben Omrane
AU  - S. Gala
AU  - M. A. Ragusa
TI  - A regularity criterion to the 3D Boussinesq equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1795
EP  - 1804
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a107/
LA  - en
ID  - SEMR_2019_16_a107
ER  - 
%0 Journal Article
%A A. M. Alghamdi
%A I. Ben Omrane
%A S. Gala
%A M. A. Ragusa
%T A regularity criterion to the 3D Boussinesq equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1795-1804
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a107/
%G en
%F SEMR_2019_16_a107
A. M. Alghamdi; I. Ben Omrane; S. Gala; M. A. Ragusa. A regularity criterion to the 3D Boussinesq equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1795-1804. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a107/