Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a107, author = {A. M. Alghamdi and I. Ben Omrane and S. Gala and M. A. Ragusa}, title = {A regularity criterion to the {3D} {Boussinesq} equations}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1795--1804}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a107/} }
TY - JOUR AU - A. M. Alghamdi AU - I. Ben Omrane AU - S. Gala AU - M. A. Ragusa TI - A regularity criterion to the 3D Boussinesq equations JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1795 EP - 1804 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a107/ LA - en ID - SEMR_2019_16_a107 ER -
%0 Journal Article %A A. M. Alghamdi %A I. Ben Omrane %A S. Gala %A M. A. Ragusa %T A regularity criterion to the 3D Boussinesq equations %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 1795-1804 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a107/ %G en %F SEMR_2019_16_a107
A. M. Alghamdi; I. Ben Omrane; S. Gala; M. A. Ragusa. A regularity criterion to the 3D Boussinesq equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1795-1804. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a107/
[1] A.M. Alghamdi, S. Gala, M.A. Ragusa, “A regularity criterion of weak solutions to the 3D Boussinesq equations”, AIMS Math., 2:3 (2017), 451–457 | DOI | MR | Zbl
[2] H. Abidi, T. Hmidi, “On the global well-posedness for the Boussinesq system”, J. Differential Equations, 233:1 (2007), 199–220 | DOI | MR | Zbl
[3] L. Brandolese, M. E. Schonbek, “Large time decay and growth for solutions of a viscous Boussinesq system”, Trans. Amer. Math. Soc., 364:10 (2012), 5057–5090 | DOI | MR | Zbl
[4] L. C. Berselli, “On a regularity criterion for the solutions to 3D Navier-Stokes equations”, Differential Integral Equations, 15:9 (2002), 1129–1137 | MR | Zbl
[5] J. R. Cannon, E. Dibenedetto, “The initial problem for the Boussinesq equation with data in $L^{p}$”, Lecture Notes in Mathematics, 771, 1980, 129–144 | DOI | MR | Zbl
[6] D. Chae, H. S. Nam, “Local existence and blow-up criterion for the Boussinesq equations”, Proc. Roy. Soc. Edinburgh. Sect. A, 127:5 (1997), 935–946 | DOI | MR | Zbl
[7] D. Chae, S.-K. Kim, H.-S. Nam, “Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations”, Nagoya Math. J., 155 (1999), 55–80 | DOI | MR | Zbl
[8] C. Cao, J. Wu, “Two regularity criteria for the 3D MHD equations”, J. Differential Equations, 248:9 (2010), 2263–2274 | DOI | MR | Zbl
[9] B. Dong, S. Gala, Z. Chen, “On the regularity criteria of the 3D Navier-Stokes equations in critical spaces”, Acta Mathematica Scientia, Series B, 31:2 (2011), 591–600 | DOI | MR | Zbl
[10] B. Dong, Y. Jia, X. Zhang, “Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion”, Commun. Pur. Appl. Anal., 12 (2012), 923–937 | DOI | MR
[11] J. Fan, T. Ozawa, “Regularity criterion for 3D density-dependent Boussinesq equations”, Nonlinearity, 22 (2009), 553–568 | DOI | MR | Zbl
[12] J. Fan, Y. Zhou, “A note on regularity criterion for the 3D Boussinesq systems with partial viscosity”, Appl. Math. Lett., 22:5 (2009), 802–805 | DOI | MR | Zbl
[13] D. Y. Fang, C. Y. Qian, “Regularity criteria for 3D Navier-Stokes equations in Besov space”, Comm. Pure Appl. Anal., 13:2 (2014), 585–603 | DOI | MR | Zbl
[14] S. Gala, “On the regularity criterion of strong solutions to the 3D Boussinesq equations”, Appl. Anal., 90:12 (2011), 1829–1835 | DOI | MR | Zbl
[15] S. Gala, “A remark on the regularity for the 3D Navier-Stokes equations in terms of the two components of the velocity”, Electronic J. Differential Equations, 2009 (2009), 148 | MR
[16] W. Chen, S. Gala, “A regularity criterion for the Navier-Stokes equations in terms of the horizontal derivatives of two velocity components”, Electronic J. Differential Equations, 2011 (2011), 6 | MR
[17] Z. Guo, S. Gala, “Remarks on logarithmical regularity criteria for the Navier-Stokes equations”, J. Math. Phys., 52:6 (2011), 063503 | DOI | MR | Zbl
[18] S. Gala, M. A. Ragusa, “A new regularity criterion for the Navier-Stokes equations in terms of two components of the velocity”, Electronic J. of Qualitative Theory of Differential Equations, 2016 (2016), 26, 9 pp. | MR
[19] S. Gala, M. Mechdene, M. A. Ragusa, “Logarithmically improved regularity criteria for the Boussinesq equations”, AIMS Math., 2 (2017), 336–347 | DOI | MR | Zbl
[20] S. Gala, M. A. Ragusa, “Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices”, Appl. Anal., 95:6 (2016), 1271–1279 | DOI | MR | Zbl
[21] S. Gala, Z. Guo, M. A. Ragusa, “A remark on the regularity criterion of Boussinesq equations with zero heat conductivity”, Appl. Math. Lett., 27 (2014), 70–73 | DOI | MR | Zbl
[22] Z. Guo, S. Gala, “Regularity criterion of the Newton–Boussinesq equations in $\mathbb{R}^3$”, Commun. Pure Appl. Anal., 11:2 (2012), 443–451 | DOI | MR | Zbl
[23] T. Y. Hou, C. Li, “Global well-posedness of the viscous Boussinesq equations”, Disc. Cont. Dyn. Syst., 12:1 (2005), 1–12 | MR | Zbl
[24] N. Ishimura, H. Morimoto, “Remarks on the blow-up criterion for the 3-D Boussinesq equations”, Math. Model. Meth. Appl. Sci., 9:9 (1999), 1323–1332 | DOI | MR | Zbl
[25] I. Kukavica, M. Zinae, “Navier-Stokes equation with regularity in one direction”, J. Math. Phys., 48:6 (2007), 065203 | DOI | MR | Zbl
[26] A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture Notes in Mathematics, 9, 2003 | DOI | MR | Zbl
[27] M. Mechdene, S. Gala, Z. Guo, A. M. Ragusa, “Logarithmical regularity criterion of the three-dimensional Boussinesq equations in terms of the pressure”, Z. Angew. Math. Phys., 67:5 (2016), 120 | DOI | MR | Zbl
[28] Y. Meyer, P. Gerard, F. Oru, “Inégalités de Sobolev précisées”, Séminaire sur les Équations aux Dérivé es Partielles 1996–1997, IV | MR
[29] J. Pedlosky, Geophysical Fluid Dynsmics, Springer Verlag, New-York, 1987
[30] Z. Skalák, “Criteria for the regularity of the solutions to the Navier-Stokes equations based on the velocity gradient”, Nonlinear Anal., 118 (2015), 1–21 | DOI | MR | Zbl
[31] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983 | MR | Zbl
[32] Y. Zhou, “A new regularity criteria for weak solutions to the Navier-Stokes equations”, J. Math. Pures Appl., 84 (2005), 1496–1514 | DOI | MR | Zbl
[33] Y. Zhou, M. Pokorny, “On the regularity of the solutions of the Navier-Stokes equations via one velocity component”, Nonlinearity, 23:5 (2010), 1097–1107 | DOI | MR | Zbl