A regularity criterion to the 3D Boussinesq equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1795-1804.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the regularity criterion for the weak solutions to the 3D Boussinesq equations in terms of the partial derivatives in Besov spaces. It is proved that the weak solution $(u,\theta )$ becomes regular provided that $ (\nabla _{h}u,\nabla _{h}\theta )\in L^{\frac{8}{3}}(0,T;\overset{\cdot }{B} _{\infty ,\infty }^{-1}(\mathbb{R}^{3}))$. Our results improve and extend the well-known results of Fang-Qian [13] for the Navier–Stokes equations.
Keywords: regularity criterion, weak solutions
Mots-clés : Boussinesq equations, Besov space.
@article{SEMR_2019_16_a107,
     author = {A. M. Alghamdi and I. Ben Omrane and S. Gala and M. A. Ragusa},
     title = {A regularity criterion to the {3D} {Boussinesq} equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1795--1804},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a107/}
}
TY  - JOUR
AU  - A. M. Alghamdi
AU  - I. Ben Omrane
AU  - S. Gala
AU  - M. A. Ragusa
TI  - A regularity criterion to the 3D Boussinesq equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1795
EP  - 1804
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a107/
LA  - en
ID  - SEMR_2019_16_a107
ER  - 
%0 Journal Article
%A A. M. Alghamdi
%A I. Ben Omrane
%A S. Gala
%A M. A. Ragusa
%T A regularity criterion to the 3D Boussinesq equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1795-1804
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a107/
%G en
%F SEMR_2019_16_a107
A. M. Alghamdi; I. Ben Omrane; S. Gala; M. A. Ragusa. A regularity criterion to the 3D Boussinesq equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1795-1804. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a107/

[1] A.M. Alghamdi, S. Gala, M.A. Ragusa, “A regularity criterion of weak solutions to the 3D Boussinesq equations”, AIMS Math., 2:3 (2017), 451–457 | DOI | MR | Zbl

[2] H. Abidi, T. Hmidi, “On the global well-posedness for the Boussinesq system”, J. Differential Equations, 233:1 (2007), 199–220 | DOI | MR | Zbl

[3] L. Brandolese, M. E. Schonbek, “Large time decay and growth for solutions of a viscous Boussinesq system”, Trans. Amer. Math. Soc., 364:10 (2012), 5057–5090 | DOI | MR | Zbl

[4] L. C. Berselli, “On a regularity criterion for the solutions to 3D Navier-Stokes equations”, Differential Integral Equations, 15:9 (2002), 1129–1137 | MR | Zbl

[5] J. R. Cannon, E. Dibenedetto, “The initial problem for the Boussinesq equation with data in $L^{p}$”, Lecture Notes in Mathematics, 771, 1980, 129–144 | DOI | MR | Zbl

[6] D. Chae, H. S. Nam, “Local existence and blow-up criterion for the Boussinesq equations”, Proc. Roy. Soc. Edinburgh. Sect. A, 127:5 (1997), 935–946 | DOI | MR | Zbl

[7] D. Chae, S.-K. Kim, H.-S. Nam, “Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations”, Nagoya Math. J., 155 (1999), 55–80 | DOI | MR | Zbl

[8] C. Cao, J. Wu, “Two regularity criteria for the 3D MHD equations”, J. Differential Equations, 248:9 (2010), 2263–2274 | DOI | MR | Zbl

[9] B. Dong, S. Gala, Z. Chen, “On the regularity criteria of the 3D Navier-Stokes equations in critical spaces”, Acta Mathematica Scientia, Series B, 31:2 (2011), 591–600 | DOI | MR | Zbl

[10] B. Dong, Y. Jia, X. Zhang, “Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion”, Commun. Pur. Appl. Anal., 12 (2012), 923–937 | DOI | MR

[11] J. Fan, T. Ozawa, “Regularity criterion for 3D density-dependent Boussinesq equations”, Nonlinearity, 22 (2009), 553–568 | DOI | MR | Zbl

[12] J. Fan, Y. Zhou, “A note on regularity criterion for the 3D Boussinesq systems with partial viscosity”, Appl. Math. Lett., 22:5 (2009), 802–805 | DOI | MR | Zbl

[13] D. Y. Fang, C. Y. Qian, “Regularity criteria for 3D Navier-Stokes equations in Besov space”, Comm. Pure Appl. Anal., 13:2 (2014), 585–603 | DOI | MR | Zbl

[14] S. Gala, “On the regularity criterion of strong solutions to the 3D Boussinesq equations”, Appl. Anal., 90:12 (2011), 1829–1835 | DOI | MR | Zbl

[15] S. Gala, “A remark on the regularity for the 3D Navier-Stokes equations in terms of the two components of the velocity”, Electronic J. Differential Equations, 2009 (2009), 148 | MR

[16] W. Chen, S. Gala, “A regularity criterion for the Navier-Stokes equations in terms of the horizontal derivatives of two velocity components”, Electronic J. Differential Equations, 2011 (2011), 6 | MR

[17] Z. Guo, S. Gala, “Remarks on logarithmical regularity criteria for the Navier-Stokes equations”, J. Math. Phys., 52:6 (2011), 063503 | DOI | MR | Zbl

[18] S. Gala, M. A. Ragusa, “A new regularity criterion for the Navier-Stokes equations in terms of two components of the velocity”, Electronic J. of Qualitative Theory of Differential Equations, 2016 (2016), 26, 9 pp. | MR

[19] S. Gala, M. Mechdene, M. A. Ragusa, “Logarithmically improved regularity criteria for the Boussinesq equations”, AIMS Math., 2 (2017), 336–347 | DOI | MR | Zbl

[20] S. Gala, M. A. Ragusa, “Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices”, Appl. Anal., 95:6 (2016), 1271–1279 | DOI | MR | Zbl

[21] S. Gala, Z. Guo, M. A. Ragusa, “A remark on the regularity criterion of Boussinesq equations with zero heat conductivity”, Appl. Math. Lett., 27 (2014), 70–73 | DOI | MR | Zbl

[22] Z. Guo, S. Gala, “Regularity criterion of the Newton–Boussinesq equations in $\mathbb{R}^3$”, Commun. Pure Appl. Anal., 11:2 (2012), 443–451 | DOI | MR | Zbl

[23] T. Y. Hou, C. Li, “Global well-posedness of the viscous Boussinesq equations”, Disc. Cont. Dyn. Syst., 12:1 (2005), 1–12 | MR | Zbl

[24] N. Ishimura, H. Morimoto, “Remarks on the blow-up criterion for the 3-D Boussinesq equations”, Math. Model. Meth. Appl. Sci., 9:9 (1999), 1323–1332 | DOI | MR | Zbl

[25] I. Kukavica, M. Zinae, “Navier-Stokes equation with regularity in one direction”, J. Math. Phys., 48:6 (2007), 065203 | DOI | MR | Zbl

[26] A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture Notes in Mathematics, 9, 2003 | DOI | MR | Zbl

[27] M. Mechdene, S. Gala, Z. Guo, A. M. Ragusa, “Logarithmical regularity criterion of the three-dimensional Boussinesq equations in terms of the pressure”, Z. Angew. Math. Phys., 67:5 (2016), 120 | DOI | MR | Zbl

[28] Y. Meyer, P. Gerard, F. Oru, “Inégalités de Sobolev précisées”, Séminaire sur les Équations aux Dérivé es Partielles 1996–1997, IV | MR

[29] J. Pedlosky, Geophysical Fluid Dynsmics, Springer Verlag, New-York, 1987

[30] Z. Skalák, “Criteria for the regularity of the solutions to the Navier-Stokes equations based on the velocity gradient”, Nonlinear Anal., 118 (2015), 1–21 | DOI | MR | Zbl

[31] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983 | MR | Zbl

[32] Y. Zhou, “A new regularity criteria for weak solutions to the Navier-Stokes equations”, J. Math. Pures Appl., 84 (2005), 1496–1514 | DOI | MR | Zbl

[33] Y. Zhou, M. Pokorny, “On the regularity of the solutions of the Navier-Stokes equations via one velocity component”, Nonlinearity, 23:5 (2010), 1097–1107 | DOI | MR | Zbl